Dtsch Med Wochenschr 2024; 149(23): 1423-1430
DOI: 10.1055/a-2360-8725
Review

100 Jahre Thrombotisch-thrombozytopenische Purpura (TTP) – Was haben wir gelernt?

100 years thrombotic thrombocytopenic purpura (TTP) – lessons learned?
Ralph Wendt
1   Klinik für Nephrologie, Klinikum St. Georg, Leipzig, Delitzscher Str. 141, 04129 Leipzig, Deutschland
,
Linus Völker
2   Klinik II für Innere Medizin und Zentrum für Molekulare Medizin Köln (ZMMK), Fakultät für Medizin, Universität zu Köln, Uniklinik Köln, Deutschland
,
Martin Bommer
3   Alb-Fils-Kliniken Göppingen, Klinik für Hämatologie, Onkologie, Infektiologie und Palliativmedizin, Eichertstraße 3, 73035 Göppingen, Deutschland
,
Marc Wolf
4   Neurologische Klinik, Katharinenhospital, Klinikum Stuttgart, Deutschland
,
Charis von Auer
5   III. Medizinische Klinik und Poliklinik für Hämatologie und Medizinische Onkologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, Deutschland
,
Lucas Kühne
2   Klinik II für Innere Medizin und Zentrum für Molekulare Medizin Köln (ZMMK), Fakultät für Medizin, Universität zu Köln, Uniklinik Köln, Deutschland
,
Paul Brinkkötter
2   Klinik II für Innere Medizin und Zentrum für Molekulare Medizin Köln (ZMMK), Fakultät für Medizin, Universität zu Köln, Uniklinik Köln, Deutschland
,
Wolfgang Miesbach
6   Schwerpunkt Hämostaseologie/Hämophiliezentrum, Medizinische Klinik II, Universitätsklinikum Frankfurt, Deutschland
,
Paul Knöbl
7   Klinik für Innere Medizin I – Abteilung für Hämatologie und Hämostaseologie, Medizinische Universität Wien, Österreich
› Author Affiliations

Zusammenfassung

Vor 100 Jahren hat Dr. Eli Moschcowitz den ersten Fall einer thrombotisch-thrombozytopenischen Purpura beschrieben. Viele Jahrzehnte gab es keine anerkannten Therapieoptionen und die Letalität war extrem hoch. Anfang der 90iger-Jahre setzte sich dann zunehmend die Therapie mit Steroiden und Plasmaaustausch durch, wobei die Letalität immer noch über 20 % lag. Es dauerte bis kurz vor die Jahrtausendwende, bis in Bern und New York die Krankheitsmechanismen (ADAMTS13-Defizienz) entschlüsselt und somit der Weg für neue Therapieoptionen frei gemacht wurde. Es wurde nun klar, dass die erworbene TTP (iTTP) eine Autoimmunerkrankung ist und der Autoantikörper gegen ADAMTS13 gerichtet ist, eine Protease, die große von-Willebrand Faktor-Multimere fragmentiert. Dadurch entsteht ein schwerer ADAMTS13-Mangel. Die Multimere überschießender Größe persistieren und binden Thrombozyten, wodurch mikrovaskuläre Thrombosierungen entstehen. Abgegrenzt davon wird die kongenitale TTP (cTTP), die durch Mutationen im ADAMTS13-Gen verursacht wird (Upshaw-Schulman-Syndrom). Bei anderen Formen der thrombotischen Mikroangiopathie (TMA, z. B. aHUS) tritt keine schwere ADAMTS13-Defizienz auf. Zwei randomisierte kontrollierte Studien belegten den Nutzen des 2019 zugelassenen, selektiven bivalenten Anti-von-Willebrand-Faktor (vWF) Nanobodies Caplacizumab in der Behandlung der iTTP. Diverse Publikationen nationaler iTTP-Kohorten verbesserten die Datenlage und zeigten konsistente Verringerungen der Zeit bis zur Normalisierung der Thrombozyten, eine drastische Reduktion refraktärer Verläufe und Exazerbationen (insbesondere bei Therapiesteuerung nach ADAMTS13-Aktivität) sowie Hinweise für eine verringerte Mortalität, die insbesondere bei korrekter und frühzeitiger Anwendung der heutigen Therapieoptionen (Plasmaaustausch, Steroide, Caplacizumab, Rituximab) bei 2–6 % anzusetzen ist. Moderne Therapieoptionen umfassen Strategien zur präemptiven Therapie bei ADAMTS13-Rezidiven sowie die plasmaaustauschfreie Behandlung. Möglicherweise wird zukünftig der Einsatz von rekombinantem ADAMTS13, auch bei iTTP-Patienten, die therapeutischen Optionen erweitern.

Abstract

100 years ago Dr. Eli Moschcowitz described the first case of thrombotic thrombocytopenic purpura. For many decades there were no recognized treatment options, and the mortality rate was extremely high. At the beginning of the 1990 s, therapy with steroids and plasma exchange became increasingly popular, although the mortality rate was still over 20 %. It took until the turn of the millennium for the disease mechanisms (ADAMTS13-deficiency) to be decoded in Bern and New York, thus paving the way for new therapy options. It has now become clear that acquired TTP (iTTP) is an autoimmune disease, and the autoantibodies are directed against ADAMTS13, a protease that cleaves large von-Willebrand multimers. This causes a severe ADAMTS13-deficiency. The ultralarge multimers persist and bind platelets, resulting in microvascular thrombosis. This is distinguished from congenital TTP (cTTP), in which severe ADAMTS13-deficiency is caused by mutations in the ADAMTS13-gene (Upshaw-Schulman syndrome). In other forms of thrombotic microangiopathy (TMA, e. g. aHUS), severe ADAMTS13-deficiency does not occur. Two randomized controlled studies demonstrated the benefit of the selective bivalent anti-von-Willebrand factor (vWF) nanobody Caplacizumab, approved in 2019, in the treatment of iTTP. Various publications from national iTTP cohorts improved the data and showed consistent reductions in the time until platelet normalization, a reduction in refractory courses and exacerbations (especially when therapy is controlled according to ADAMTS13-activity) as well as evidence of reduced mortality. Modern therapeutic options include strategies for preemptive therapy for ADAMTS13-relapse as well as plasma exchange-free treatment. The use of recombinant ADAMTS13 may also expand the therapeutic options in iTTP patients in the future.



Publication History

Article published online:
06 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Moschcowitz E. An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries An undescribed disease. Am J Med 1952; 13: 567-569
  • 2 Singer K, Borstein FP, Wile SA. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses. Blood 1947; 2: 542-554
  • 3 Amorosi EL, Ultmann JE. Thrombotic thrombocytopenic purpura. Medicine 1966; 45: 139-160
  • 4 Furlan M, Robles R, Lammle B. Partial Purification and Characterization of a Protease From Human Plasma Cleaving von Willebrand Factor to Fragments Produced by In Vivo Proteolysis. Blood 1996; 87: 4223-4234
  • 5 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 1996; 87: 4235-4244
  • 6 Zheng X, Chung D, Takayama TK. et al. Structure of von Willebrand Factor-cleaving Protease (ADAMTS13), a Metalloprotease Involved in Thrombotic Thrombocytopenic Purpura*. J Biol Chem 2001; 276: 41059-41063
  • 7 Zheng XL, Vesely SK, Cataland SR. et al. ISTH guidelines for the diagnosis of thrombotic thrombocytopenic purpura. J Thromb Haemost 2020; 18: 2486-2495
  • 8 Zheng XL, Vesely SK, Cataland SR. et al. ISTH guidelines for treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost 2020; 18: 2496-2502
  • 9 Kokame K, Nobe Y, Kokubo Y. et al. FRETS‐VWF73, a first fluorogenic substrate for ADAMTS13 assay. Brit J Haematol 2005; 129: 93-100
  • 10 Kato S, Matsumoto M, Matsuyama T. et al. Novel monoclonal antibody‐based enzyme immunoassay for determining plasma levels of ADAMTS13 activity. Transfusion 2006; 46: 1444-1452
  • 11 Thomas MR, de Groot R , Scully MA. et al. Pathogenicity of Anti-ADAMTS13 Autoantibodies in Acquired Thrombotic Thrombocytopenic Purpura. EBioMedicine 2015; 2: 942-952
  • 12 Scheiflinger F, Knöbl P, Trattner B. et al. Nonneutralizing IgM and IgG antibodies to von Willebrand factor–cleaving protease (ADAMTS-13) in a patient with thrombotic thrombocytopenic purpura. Blood 2003; 102: 3241-3243
  • 13 Joly BS, Roose E, Coppo P. et al. ADAMTS13 conformation is closed in non-immune acquired thrombotic thrombocytopenic purpura of unidentified pathophysiology. Haematologica 2022; 108: 638-644
  • 14 Moore GW, Meijer D, Griffiths M. et al. A multi‐center evaluation of TECHNOSCREEN® ADAMTS‐13 activity assay as a screening tool for detecting deficiency of ADAMTS‐13. J Thromb Haemost 2020; 18: 1686-1694
  • 15 Bendapudi PK, Hurwitz S, Fry A. et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol 2017; 4: e157-e164
  • 16 Coppo P, Cuker A, George JN. Thrombotic thrombocytopenic purpura: Toward targeted therapy and precision medicine. Res Pr Thromb Haemost 2019; 3: 26-37
  • 17 Coppo P, Schwarzinger M, Buffet M. et al. Predictive Features of Severe Acquired ADAMTS13 Deficiency in Idiopathic Thrombotic Microangiopathies: The French TMA Reference Center Experience. Plos One 2010; 5: e10208
  • 18 Fage N, Orvain C, Henry N. et al. Proteinuria Increases the PLASMIC and French Scores Performance to Predict Thrombotic Thrombocytopenic Purpura in Patients With Thrombotic Microangiopathy Syndrome. Kidney Int Rep 2022; 7: 221-231
  • 19 Benhamou Y, Assié C, Boelle P-Y. et al. Development and validation of a predictive model for death in acquired severe ADAMTS13 deficiency-associated idiopathic thrombotic thrombocytopenic purpura: the French TMA Reference Center experience. Haematologica 2012; 97: 1181-1186
  • 20 Goel R, King KE, Takemoto CM. et al. Prognostic risk‐stratified score for predicting mortality in hospitalized patients with thrombotic thrombocytopenic purpura: nationally representative data from 2007 to 2012. Transfusion 2016; 56: 1451-1458
  • 21 Abou-Ismail MY, Zhang C, Presson A. et al. Mortality in Acute Immune-Mediated Thrombotic Thrombocytopenic Purpura (iTTP) Is Unpredictable: Poor Statistical Performance of Mortality Prediction Models. Blood 2021; 138: 771
  • 22 Staley EM, Cao W, Pham HP. et al. Clinical factors and biomarkers predict outcome in patients with immune-mediated thrombotic thrombocytopenic purpura. Haematologica 2019; 104: 166-175
  • 23 Benhamou Y, Boelle P-Y, Baudin B. et al. Cardiac troponin‐I on diagnosis predicts early death and refractoriness in acquired thrombotic thrombocytopenic purpura. Experience of the French Thrombotic Microangiopathies Reference Center. J Thromb Haemost 2015; 13: 293-302
  • 24 Chaturvedi S, Carcioppolo D, Zhang L. et al. Management and outcomes for patients with TTP: analysis of 100 cases at a single institution. Am J Hematol 2013; 88: 560-565
  • 25 Abou-Ismail MY, Zhang C, Presson AP. et al. A machine learning approach to predict mortality due to immune-mediated thrombotic thrombocytopenic purpura. Res Pr Thromb Haemost 2024; 8: 102388
  • 26 Alwan F, Vendramin C, Vanhoorelbeke K. et al. Presenting ADAMTS13 antibody and antigen levels predict prognosis in immune-mediated thrombotic thrombocytopenic purpura. Blood 2017; 130: 466-471
  • 27 Lotta LA, Mariani M, Consonni D. et al. Different clinical severity of first episodes and recurrences of thrombotic thrombocytopenic purpura. Br J Haematol 2010; 151: 488-494
  • 28 Domingo-González A, Regalado-Artamendi I, Martín-Rojas RM. et al. Application of the French TMA Reference Center Score and the mortality in TTP Score in de novo and relapsed episodes of acquired thrombotic thrombocytopenic purpura at a tertiary care facility in Spain. J Clin Apher 2021; 36: 420-428
  • 29 Masias C, Wu H, McGookey M. et al. No major differences in outcomes between the initial and relapse episodes in patients with thrombotic thrombocytopenic purpura: The experience from the Ohio State University Registry. Am J Hematol 2018; 93: E73-E75
  • 30 Matsuyama T, Kuwana M, Matsumoto M. et al. Heterogeneous pathogenic processes of thrombotic microangiopathies in patients with connective tissue diseases. Thromb Haemost 2009; 102: 371-378
  • 31 Fujimura Y, Matsumoto M. Registry of 919 Patients with Thrombotic Microangiopathies across Japan: Database of Nara Medical University during 1998-2008. Intern Med 2010; 49: 7-15
  • 32 Cuker A, Cataland SR, Coppo P. et al. Redefining outcomes in immune TTP: an international working group consensus report. Blood 2021; 137: 1855-1861
  • 33 Rock GA, Shumak KH, Buskard NA. et al. Comparison of Plasma Exchange with Plasma Infusion in the Treatment of Thrombotic Thrombocytopenic Purpura. N Engl J Med 1991; 325: 393-397
  • 34 Som S, Deford CC, Kaiser ML. et al. Decreasing frequency of plasma exchange complications in patients treated for thrombotic thrombocytopenic purpura‐hemolytic uremic syndrome, 1996 to 2011 (CME). Transfusion 2012; 52: 2525-2532
  • 35 Kappers-Klunne MC, Wijermans P, Fijnheer R. et al. Splenectomy for the treatment of thrombotic thrombocytopenic purpura. Br J Haematol 2005; 130: 768-776
  • 36 de Louw AV , Mariotte E, Darmon M. et al. Outcomes in 1096 patients with severe thrombotic thrombocytopenic purpura before the Caplacizumab era. PLoS ONE 2021; 16: e0256024
  • 37 Owattanapanich W, Wongprasert C, Rotchanapanya W. et al. Comparison of the Long-Term Remission of Rituximab and Conventional Treatment for Acquired Thrombotic Thrombocytopenic Purpura: A Systematic Review and Meta-Analysis. Clin Appl Thromb Hemost 2019; 25: 1076029618825309
  • 38 Jestin M, Benhamou Y, Schelpe A-S. et al. Preemptive rituximab prevents long-term relapses in immune-mediated thrombotic thrombocytopenic purpura. Blood 2018; 132: 2143-2153
  • 39 Peyvandi F, Scully M, Hovinga JAK. et al. Caplacizumab for Acquired Thrombotic Thrombocytopenic Purpura. N Engl J Med 2016; 374: 511-522
  • 40 Scully M, Cataland SR, Peyvandi F. et al. Caplacizumab Treatment for Acquired Thrombotic Thrombocytopenic Purpura. New Engl J Med 2019; 380: 335-346
  • 41 Page EE, Hovinga JAK, Terrell DR. et al. Thrombotic thrombocytopenic purpura: diagnostic criteria, clinical features, and long-term outcomes from 1995 through 2015. Blood Adv 2017; 1: 590-600
  • 42 Mancini I, Pontiggia S, Palla R. et al. Clinical and Laboratory Features of Patients with Acquired Thrombotic Thrombocytopenic Purpura: Fourteen Years of the Milan TTP Registry. Thromb Haemost 2019; 119: 695-704
  • 43 Coppo P, Bubenheim M, Azoulay E. et al. A regimen with caplacizumab, immunosuppression, and plasma exchange prevents unfavorable outcomes in immune-mediated TTP. Blood 2021; 137: 733-742
  • 44 Izquierdo CP, Mingot-Castellano ME, Fuentes AEK. et al. Real-world effectiveness of caplacizumab vs standard of care in immune thrombotic thrombocytopenic purpura. Blood Adv 2022; 6: 6219-6227
  • 45 Völker LA, Kaufeld J, Balduin G. et al. Impact of first-line use of caplacizumab on treatment outcomes in immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2023 Mar 21 (03) 559-572
  • 46 Völker LA, Kaufeld J, Miesbach W. et al. Real-world data confirm the effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura. Blood Adv 2020; 4: 3085-3092
  • 47 Dutt T, Shaw RJ, Stubbs M. et al. Real-world experience with caplacizumab in the management of acute TTP. Blood 2021; 137: 1731-1740
  • 48 Völker LA, Kaufeld J, Miesbach W. et al. ADAMTS13 and VWF activities guide individualized caplacizumab treatment in patients with aTTP. Blood Adv 2020; 4: 3093-3101
  • 49 Kühne L, Knoebl P, Eller K. et al. Management of Immune Thrombotic Thrombocytopenic Purpura without Therapeutic Plasma Exchange. Blood 2024;
  • 50 Scully M, Antun A, Cataland SR. et al. Recombinant ADAMTS13 in Congenital Thrombotic Thrombocytopenic Purpura. N Engl J Med 2024; 390: 1584-1596
  • 51 Peyvandi F, Cataland S, Scully M. et al. Caplacizumab prevents refractoriness and mortality in acquired thrombotic thrombocytopenic purpura: integrated analysis. Blood Adv 2021; 5: 2137-2141
  • 52 Völker LA, Brinkkoetter PT, Cataland SR. et al. Five years of caplacizumab – lessons learned and remaining controversies in immune-mediated thrombotic thrombocytopenic purpura. J Thromb Haemost 2023; 21: 2718-2725