Subscribe to RSS
DOI: 10.1055/a-2384-6371
NiCo2O4-Nanoparticle-Catalyzed Microwave-Assisted Dehydrogenative Direct Oxidation of Primary Alcohols to Carboxylic Acids under Oxidant-Free Conditions
Authors are pleased to acknowledge the Department of Science and Technology, Ministry of Science and Technology, India (DST-FIST, F.No. SR/FIST/CSI-264/2015(C), Dt 26.05.2016) for providing funding to establish instrument facilities.

Dedicated to the honorable Prof. Brindaban C. Ranu
Abstract
Here, we report the NiCo2O4-nanoparticle-catalyzed dehydrogenative direct oxidation of primary alcohols to carboxylic acid in the presence of KOH under microwave irradiation in the absence of any oxidant in good to excellent yields (75–99%) within a short reaction time (5–10 min). The polycrystalline cubic spinel phase of NiCo2O4 nanoparticles (NPs) with an average size of 25 nm were synthesized by the co-precipitation method and analyzed properly by using powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The NiCo2O4 NPs were stable under the reaction conditions and reused for up to eight cycles without appreciable loss in the yield of benzoic acid. According to mechanistic insight, the KOH acts as a second oxygen source and is essential for the synthesis of carboxylic acid from alcohols. The hydrogen gas was found to be the only byproduct of this method detected by chemical reactions.
Keywords
nano-NiCo2O4 - dehydrogenative oxidation - direct oxidation of primary alcohols - carboxylic acids - green synthesis - recyclabilitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2384-6371.
- Supporting Information
Publication History
Received: 19 June 2024
Accepted after revision: 12 August 2024
Accepted Manuscript online:
12 August 2024
Article published online:
09 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Modern Oxidation Methods. Bäckwall JE. Wiley-VCH; Weinheim: 2004
- 1b Ley SV. In Comprehensive Organic Synthesis, 3rd ed. Trost BM, Fleming I. Pergamon Press; Oxford: 1999
- 1c Arends IW. C. E, Sheldon RA. Modern Oxidation of Alcohols Using Environmentally Benign Oxidants. In Modern Oxidation Methods, 2nd ed. Bäckvall J.-E. Wiley-VCH; Weinheim: 2004
- 1d Gehrmann S, Tenhumberg N. Chem. Ing. Tech. 2020; 92: 1444
- 2a Ogliaruso MA, Wolfe JF. Synthesis of Carboxylic Acids, Esters and Their Derivatives: The Chemistry of Functional Groups. Patai S. Wiley; Hoboken: 1991
- 2b Smith MB. Compendium of Organic Synthetic Methods. Wiley; Hoboken: 2000
- 2c Larock RC. Comprehensive Organic Transformations, A Guide to Functional Group Preparations, 2nd ed. J. Wiley and Sons; Hoboken: 1999
- 3a Tojo G, Fernández MI. Oxidation of Primary Alcohols to Carboxylic Acids: A Guide to Current Common Practice. Springer; New York: 2007
- 3b Tojo G, Fernández M. Oxidation of Primary Alcohols to Carboxylic Acids. In Basic Reactions in Organic Synthesis. Springer; New York: 2010
- 4 Zhao M, Li J, Song Z, Desmond R, Tschaen DM, Grabowski EJ. J, Reider PJ. Tetrahedron Lett. 1998; 39: 5323
- 5 Mahmood A, Robinson GE, Powell L. Org. Process Res. Dev. 1999; 3: 363
- 6 George MV, Balachandran KS. Chem. Rev. 1975; 75: 491
- 7 Uyanik M, Akakura M, Ishihara K. J. Am. Chem. Soc. 2009; 131: 251
- 8a Jiang X, Zhang J, Ma S. J. Am. Chem. Soc. 2016; 138: 8344
- 8b Tan WY, Lu Y, Zhao JF, Chen W, Zhang H. Org. Lett. 2021; 23: 6648
- 9 Ganji N, Karimi B, Derikvandi SN, Vali H. RSC Adv. 2020; 10: 13616
- 10a Liu H.-M, Jian L, Li C, Zhang C, Fu H.-y, Zheng X.-L, Chen H, Li R.-X. J. Org. Chem. 2019; 84: 9151
- 10b Santilli C, Makarov IS, Fristrup P, Madsen R. J. Org. Chem. 2016; 81: 9931
- 11 Annen S, Zweifel T, Ricatto F, Grützmacher H. ChemCatChem 2010; 2: 1286
- 12 Cherepakhin V, Williams TJ. ACS Catal. 2018; 8: 3754
- 13 Selivanova NV, Berdnikova PV, Pai ZP. Catal. Ind. 2021; 13: 111
- 14 Mannam S, Sekar G. Tetrahedron Lett. 2008; 49: 2457
- 15 Han L, Xing P, Jiang B. Org. Lett. 2014; 16: 3428
- 16 Cui X, Huang Z, van Muyden AP, Fei Z, Wang T, Dyson PJ. Sci. Adv. 2020; 6: eabb3831
- 17a Whitesides GM, Hackett M, Brainard RL, Lavalleye JP. P, Sowinski AF, Izumi AN, Moore SS, Brown DW, Staudt EM. Organometallics 1985; 4: 1819
- 17b Donze C, Korovchenko P, Gallezot P, Besson M. Appl. Catal., B 2007; 70: 621
- 18a Nguyen DH, Morin Y, Zhang L, Trivelli X, Capet F, Paul S, Desset S, Dumeignil F, Gauvin RM. ChemCatChem 2017; 9: 2652
- 18b Jiang X, Zhang J, Ma S. J. Am. Chem. Soc. 2016; 138: 8344
- 19 Shao Z, Wang Y, Liu Y, Wang Q, Fu X, Liu Q. Org. Chem. Front. 2018; 5: 1248
- 20 Monda F, Madsen R. Chem. Eur. J. 2018; 24: 17832
- 21 Balaraman E, Khaskin E, Leitus G, Milstein D. Nat. Chem. 2013; 5: 122
- 22 Sawama Y, Morita K, Asai S, Kozawa M, Tadokoro S, Nakajima J, Monguchi Y, Sajiki H. Adv. Synth. Catal 2015; 357: 1205
- 23a Choi JH, Heim LE, Ahrens M, Prechtl MH. G. Dalton Trans. 2014; 43: 17248
- 23b Santilli C, Makarov IS, Fristrup P, Madsen R. J. Org. Chem. 2016; 81: 9931
- 23c Espinosa DV, Vicent C, Baya M, Mata JA. Catal. Sci. Technol. 2016; 6: 8024
- 23d Zhang L, Nguyen DH, Raffa G, Trivelli X, Capet F, Desset S, Paul S, Dumeignil F, Gauvin RM. ChemSusChem 2016; 9: 1413
- 23e Choi JH, Heim LE, Ahrens M, Prechtl MH. Dalton Trans. 2014; 43: 17248
- 23f Dai Z, Luo Q, Meng X, Li R, Zhang J, Peng T. J. Organomet. Chem. 2017; 830: 11
- 23g Tincado M, Grutzmacher H, Bianchini C. Chem. Eur. J. 2010; 16: 2751
- 23h Sarbajna A, Dutta I, Daw P, Dinda S, Rahaman SW, Sarkar A, Bera JK. ACS Catal. 2017; 7: 2786
- 23i Rezayati S, Morsali A. Inorg. Chem. 2024; 63: 6051
- 23j Kalantari F, Rezayati S, Moghadam MM, Ramazani A. Inorg. Chem. Commun. 2024; 164: 112371
- 23k Rezayati S, Moghadam MM, Naserifar Z, Ramazani A. Inorg. Chem. 2024; 63: 1652
- 23l Rezayati S, Haghighat H, Ramazani A. Silicon 2023; 15: 2679
- 23m Partovi M, Rezayati S, Ramazani A, Ahmadi Y, Taherkhani H. RSC Adv. 2023; 13: 33566
- 24a Gu S, Lou Z, Ma X, Shen G. ChemElectroChem 2015; 2: 1042
- 24b Serov A, Andersen NI, Roy AJ, Matanovic I, Artyushkova K, Atanassov P. J. Electrochem. Soc. 2015; 162: 449
- 24c Anke S, Bendt G, Sinev I, Hajiyani H, Antoni H, Zegkinoglou I, Hyosang J, Pentcheva R, Cuenya BR, Schulz S, Muhler M. ACS Catal. 2019; 9: 5974
- 24d Patel AR, Sereda G, Banerjee S. Curr. Pharm. Biotechnol. 2021; 22: 773
- 25a Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XW. D. Adv. Funct. Mater. 2012; 22: 4592
- 25b Wang H, Gao Q, Jiang L. Small 2011; 7: 2454
- 25c Wang Q, Liu B, Wang X, Ran S, Wang L, Chen D, Hen G. J. Mater. Chem. 2012; 22: 21647
- 25d Wei TY, Chen CH, Chien HC, Lu SY, Hu CC. Adv. Mater. 2010; 22: 347
- 25e Zou R, Xu K, Wang T, He G, Liu Q, Liu X, Zhang Z, Hu J. J. Mater. Chem. A 2013; 1: 8560
- 25f Jiang H, Ma J, Li C. Chem. Commun. 2012; 48: 4465
- 25g Patel AR, Bhagat S, Neha Neha, Patel G, Maity G, Turpu GR, Singh AK, Banerjee S. Int. J. Hydrogen Energy 2024; 51C: 561
- 26a Banerjee S, Saha A. New J. Chem. 2013; 37: 4170
- 26b Banerjee S, Payra S, Saha A, Sereda G. Tetrahedron Lett. 2014; 55: 5515
- 26c Saha A, Payra S, Banerjee S. Green Chem. 2015; 17: 2859
- 26d Payra S, Saha A, Banerjee S. RSC Adv. 2016; 6: 12402
- 26e Payra S, Saha A, Guchhait S, Banerjee S. RSC Adv. 2016; 6: 33462
- 26f Payra S, Saha A, Banerjee S. RSC Adv. 2016; 6: 52495
- 26g Payra S, Saha A, Banerjee S. ChemistrySelect 2018; 3: 7535
- 26h Saha A, Payra S, Selvaratnam B, Bhattacharya S, Pal S, Koodali RT, Banerjee S. ACS Sustainable Chem. Eng. 2018; 6: 11345
- 26i Patel AR, Asatkar A, Patel G, Banerjee S. ChemistrySelect 2019; 4: 5577
- 26j Patel AR, Patel G, Banerjee S. ACS Omega 2019; 4: 22445
- 26k Patel G, Patel AR, Lambat TL, Mahmood SH, Banerjee S. FlatChem 2020; 21: 100163
- 26l Patel G, Patel AR, Lambat TL, Banerjee S. Curr. Res. Green Sustainable Chem. 2021; 4: 100149
- 27a Patel AR, Patel G, Maity G, Patel SP, Bhattacharya S, Putta A, Banerjee S. ACS Omega 2020; 5: 30416
- 27b Patel G, Patel AR, Maity G, Das S, Patel Shiv P, Banerjee S. Curr. Res. Green Sustainable Chem. 2022; 5: 100258
- 28 Yin H, Zhu J, Chen J, Gong J, Nie Q. J. Mater. Sci. 2018; 53: 11951
- 29 Mahata A, Rai RK, Choudhuri I, SinghS K, Pathak B. Phys. Chem. Chem. Phys. 2014; 16: 26365
- 30a Dai Z, Luo Q, Jiang H, Li H, Zhang J, Peng T. Catal. Sci. Technol. 2017; 7: 2506
- 30b Pradhan DR, Pattanaik S, Kishore J, Gunanathan C. Org. Lett. 2020; 22: 1852
-
31
General Experimental Procedure for NiCo2O4-NPs-Catalyzed Dehydrogenative Oxidation of Alcohol to Acid
A round-bottomed flask (50 mL) was charged with a mixture of benzyl alcohol (1.0 mmol), potassium hydroxide (2.0 equiv.), catalyst (30 mg), and toluene (2.0 mL) heated under microwave conditions (120 °C, 100 W) for 10 min. The formation of the product was checked by TLC. Next, the catalyst was separated by centrifugation at 600 rpm, and then the product was extracted with ethyl acetate (5 mL), washed with HCl (1 M) and then distilled water, and purified by column chromatography over silica gel (60–120 mesh) using ethyl acetate and petroleum ether (1:9) as an eluting solvent to obtain the pure product benzoic acid as a white solid. The formation of the benzoic acid was confirmed by its melting point determination and 1H NMR and 13C NMR spectroscopic studies. The solid part was washed with water and ethanol and dried in an oven at 80 °C for 6 h and recycled for subsequent runs.
Analytical Data of Compounds
Benzoic Acid (2a) 1H NMR (500 MHz, CDCl3): δ = 8.18–8.15 (d, J = 10.0 Hz, 2 H), 7.67–7.65 (t, J = 10.0 Hz, 1 H) 7.64–7.49 (t, J = 10.0 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 172.54, 133.81, 130.24, 129.47, 128.51. 2-Methyl Benzoic Acid (2c) 1H NMR (500 MHz, CDCl3) δ = 12.44 (s, 1 H), 8.13–8.10 (d, J = 10.0 Hz, 2 H), 7.51–7.48 (m, 1 H) 7.47–7.30 (t, J = 10.0 Hz, 2 H), 2.70 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 173.55, 141.42, 133.01, 131.97, 131.64, 128.34, 125.90, 22.19. Anthracene-9-carboxylic acid (2f) 1H NMR (500 MHz, CDCl3): δ = 8.64 (s, 1 H), 8.38 (d, J = 10.0 Hz, 2 H), 8.09 (d, J = 10.0 Hz, 2 H), 7.67–7.63 (m, 2 H), 7.58–7.54 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 130.97, 130.47, 128.76, 127.42, 125.96, 125.62, 125.14. 4-Chloro Benzoic Acid (2j) 1H NMR (500 MHz, CDCl3): δ = 8.07 (d, J = 10.0 Hz, 1 H), 7.48 (d, J = 10.0, 1 H). 13C NMR (125 MHz, CDCl3): δ = 131.60, 128.93. 4-Amino Benzoic Acid (2m) 1H NMR (500 MHz, CDCl3): δ = 7.94 (d, J = 10.0 Hz, 1 H), 6.69 (d, J = 10.0, 1 H). 13C NMR (125 MHz, CDCl3): δ = 151.49, 132.41, 118.54, 113.80. Cinnamic Acid (2q) 1H NMR (500 MHz, CDCl3); δ = 7.84 (d, J = 10.00 Hz, 1 H), 7.61–7.57 (m, 2 H), 7.46–7.42 (m, 3 H), 6.50 (d, J = 10.00 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 172.64, 147.14, 134.075, 133.78, 130.787, 128.99, 128.41, 117.37.