Subscribe to RSS
DOI: 10.1055/a-2402-6757
Aza-BODIPY-Based Bifunctional Photocatalyst for Red-Light-Driven Asymmetric Hydroxylation of β‑Ketoesters
The National Natural Science Foundation of China (22122102, 22271134), Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), Guangdong Pearl River Talent Program (2019QN01Y628), Shenzhen Science and Technology Innovation Commission (RCJC20221008092723013, JCYJ20230807093104009), and Hebei Province Innovation Capability Enhancement Plan Project (22567632H).
Abstract
A novel bifunctional photocatalyst combining an aza-BODIPY and a chiral oxazoline has been developed. This photocatalyst enables the asymmetric hydroxylation of β‑ketoesters under an oxygen atmosphere and irradiation with 18-W red LEDs. This procedure offers a convenient and potentially general approach to obtain enantioenriched α-hydroxy-β-dicarbonyl products. The results reported in this manuscript demonstrate the promise of this new organic photocatalyst design and will help expand the application of BODIPY-based chiral photocatalysts.
Key words
bifunctional photocatalyst - aza-BODIPY - asymmetric catalysis - β‑ketoesters - red-light photocatalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2402-6757.
- Supporting Information
Publication History
Received: 31 May 2024
Accepted after revision: 23 August 2024
Accepted Manuscript online:
23 August 2024
Article published online:
26 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 1b Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 1c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 1d Schultz DM, Yoon TP. Science 2014; 343: 985
- 1e Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
- 1f Cavedon C, Seeberger PH, Pieber B. Eur. J. Org. Chem. 2019; 2019: 1379
- 1g Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 1h Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chem. Rev. 2022; 122: 1654
- 1i Pitre SP, Overman LE. Chem. Rev. 2022; 122: 1717
- 1j Shing Cheung KP, Sarkar S, Gevorgyan V. Chem. Rev. 2022; 122: 1543
- 2a Teplý F. Collect. Czech. Chem. Commun. 2011; 76: 859
- 2b Hari DP, Koenig B. Chem. Commun. 2014; 50: 6688
- 2c Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
- 2d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 2e Marzo L, Pagire SK, Reiser O, Koenig B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 2f Michelin C, Hoffmann N. ACS Catal. 2018; 8: 12046
- 2g Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
- 3a Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T. J. Am. Chem. Soc. 2005; 127: 12162
- 3b Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
- 3c Singh PK, Majumdar P, Singh SP. Coord. Chem. Rev. 2021; 449: 214193
- 3d Rana P, Singh N, Majumdar P, Prakash Singh S. Coord. Chem. Rev. 2022; 470: 214698
- 4a Li W, Xie Z, Jing X. Catal. Commun. 2011; 16: 94
- 4b Guo S, Tao R, Zhao J. RSC Adv. 2014; 4: 36131
- 4c Zhao J, Xu K, Yang W, Wang Z, Zhong F. Chem. Soc. Rev. 2015; 44: 8904
- 4d Bassan E, Gualandi A, Cozzi PG, Ceroni P. Chem. Sci. 2021; 12: 6607
- 4e De Bonfils P, Peault L, Nun P, Coeffard V. Eur. J. Org. Chem. 2021; 2021: 1809
- 5 Fischer J, Mele L, Serier-Brault H, Nun P, Coeffard V. Eur. J. Org. Chem. 2019; 2019: 6352
- 6 Zu B, Guo Y, Ren L.-Q, Li Y, He C. Nat. Synth. 2023; 2: 564
- 7a Lee J, Papatzimas JW, Bromby AD, Gorobets E, Derksen DJ. RSC Adv. 2016; 6: 59269
- 7b Ravetz BD, Tay NE. S, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. ACS Cent. Sci. 2020; 6: 2053
- 7c Cabanero DC, Kariofillis SK, Johns AC, Kim J, Ni J, Park S, Parker DL. Jr, Ramil CP, Roy X, Shah NH, Rovis T. J. Am. Chem. Soc. 2024; 146: 1337
- 7d Hossain MM, Shaikh AC, Kaur R, Gianetti TL. J. Am. Chem. Soc. 2024; 146: 7922
- 7e Ryu KA, Reyes-Robles T, Wyche TP, Bechtel TJ, Bertoch JM, Zhuang J, May C, Scandore C, Dephoure N, Wilhelm S, Ishtiaque Quasem I, Yau A, Ingale S, Szendrey A, Duich M, Oslund RC, Fadeyi OO. ACS Catal. 2024; 14: 3482
- 8a Li W, Li L, Xiao H, Qi R, Huang Y, Xie Z, Jing X, Zhang H. RSC Adv. 2013; 3: 13417
- 8b Rey YP, Abradelo DG, Santschi N, Strassert CA, Gilmour R. Eur. J. Org. Chem. 2017; 2017: 2170
- 9 Ge Y, O’Shea DF. Chem. Soc. Rev. 2016; 45: 3846
- 10a Yoon TP, Jacobsen EN. Science 2003; 299: 1691
- 10b Amador AG, Sherbrook EM, Yoon TP. J. Am. Chem. Soc. 2016; 138: 4722
- 10c Blum TR, Miller ZD, Bates DM, Guzei IA, Yoon TP. Science 2016; 354: 1391
- 10d Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 1832
- 10e Stache EE, Rovis T, Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 3679
- 10f Wang D, Zhu N, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2017; 139: 15632
- 10g Connon R, Roche B, Rokade BV, Guiry PJ. Chem. Rev. 2021; 121: 6373
- 11 Sheng W, Chang F, Wu Q, Hao E, Jiao L, Wang J.-Y, Pei J. Org. Lett. 2020; 22: 185
- 12 Ding W, Lu L.-Q, Zhou Q.-Q, Wei Y, Chen J.-R, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 63