Nervenheilkunde 2024; 43(12): 720-725
DOI: 10.1055/a-2426-9877
Schwerpunkt

Digitale Remote Measurement Based Care Systeme in der Psychiatrischen Versorgung von Menschen mit schweren psychischen Erkrankungen

Ein narrativer ÜbersichtsartikelDigital remote measurement-based care systems in the psychiatric care of people with severe mental illnessesA narrative overview
Caspar Wiegmann
1   Klinik für Psychiatrie und Psychotherapie, Kliniken im Theodor-Wenzel-Werk, Berlin
,
Anastasia Benedyk
2   Abteilung für Psychiatrie und Psychotherapie, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim
3   Deutsches Zentrum für Psychische Gesundheit (DZPG), Standort Mannheim-Heidelberg-Ulm, Mannheim
,
Felix Machleid
4   Psychiatrische Universitätsklinik der Charité im St. Hedwig Krankenhaus, Berlin
,
Jakob Kaminski
5   Klinik für Psychiatrie und Psychotherapie, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
6   Recovery Cat GmbH, Berlin
› Author Affiliations

ZUSAMMENFASSUNG

Remote Measurement Based Care (RMBC) bezeichnet die Anwendung digitaler Technologien zur kontinuierlichen Erfassung und Analyse von Patientendaten in der psychiatrischen Versorgung. Diese Form der Versorgung nutzt digitale Tools, um die Behandlungsergebnisse zu verbessern, indem sie eine regelmäßige Messung der Symptome, Nebenwirkungen, Aktivitäten und den Austausch von Informationen zwischen Patienten und Behandler ermöglicht. RMBC ist ein vielversprechender Ansatz, um die Therapie von psychischen Erkrankungen zu optimieren und die Patientenbeteiligung zu fördern. In diesem Artikel werden ausgewählte Anwendungen von RMBC sowie Überlappungen und Unterschiede zu ähnlichen Konzepten wie Psychotherapie-Feedback und Ecological Momentary Assessment (EMA) beschrieben. Anwendungen von RMBC bei psychiatrischen Erkrankungen, insbesondere schweren psychischen Erkrankungen (severe mental illness, SMI) werden dargestellt, sowie Chancen und Implementierungsbarrieren diskutiert.

ABSTRACT

Remote Measurement Based Care (RMBC) refers to digital technologies that are used to continuously collect and analyze patient data in mental health care. This form of care uses digital tools to improve treatment outcomes by enabling regular assessment of symptoms, side-effects, patient activities and facilitating the exchange of information between patients and practitioners. RMBC has shown promise in optimizing the treatment of mental illness and promoting patient engagement. This article describes selected applications of RMBC as well as overlaps and differences with similar concepts such as psychotherapy feedback and Ecological Momentary Assessment (EMA). Applications of RMBC in psychiatric disorders, particularly severe mental illness (SMI), are presented, and opportunities and barriers to implementation are discussed.



Publication History

Article published online:
02 December 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Aaron Beck, John Rush, Brian Shaw. et al Cognitive Therapy of Depression. 1. Aufl. New York: The Guilford Press; 1979
  • 2 Marks IM. Fears, Phobias, and Rituals: Panic, Anxiety, and Their Disorders. New York: Oxford University Press; 1987
  • 3 Linehan M. Cognitive-behavioral treatment of borderline personality disorder. New York: Guilford Press; 1993
  • 4 Goodwin FK, Jamison KR, Ghaemi SN. Manic-depressive illness: bipolar disorders and recurrent depression. 2nd ed. New York: Oxford University Press; 2007
  • 5 Turk DC, Okifuji A. Assessment of patients’ reporting of pain: an integrated perspective. The Lancet 1999; 353: 1784-1788
  • 6 Trivedi MH, Rush AJ, Wisniewski SR. et al Evaluation of Outcomes With Citalopram for Depression Using Measurement-Based Care in STAR*D: Implications for Clinical Practice. Am J Psychiatry 2006; 163: 28-40
  • 7 Goldberg SB, Buck B, Raphaely S. et al Measuring Psychiatric Symptoms Remotely: a Systematic Review of Remote Measurement-Based Care. Curr Psychiatry Rep 2018; 20: 81
  • 8 Machleid F, Michnevich T, Huang L. et al Remote measurement based care (RMBC) interventions for mental health — Protocol of a systematic review and meta-analysis. PLOS ONE 2024; 19: e0297929
  • 9 Valsangkar N, Fernandez F, Khullar O. Patient reported outcomes: integration into clinical practices. J Thorac Dis 2020; 12: 6940-6946 10.21037/jtd.2020.03.91
  • 10 Hovland RT, Ytrehus S, Mellor-Clark J. et al How patients and clinicians experience the utility of a personalized clinical feedback system in routine practice. J Clin Psychol 2023; 79: 711-728
  • 11 Bovendeerd B, De Jong K, De Groot E. et al Enhancing the effect of psychotherapy through systematic client feedback in outpatient mental healthcare: A cluster randomized trial. Psychother Res J Soc Psychother Res 2022; 32: 710-722
  • 12 Kivelä L, Van Der Does WAJ, Riese H. et al Don’t Miss the Moment: A Systematic Review of Ecological Momentary Assessment in Suicide Research. Front Digit Health 2022; 4: 876595
  • 13 Bos FM, Von Klipstein L, Emerencia AC. et al A Web-Based Application for Personalized Ecological Momentary Assessment in Psychiatric Care: User-Centered Development of the PETRA Application. JMIR Ment Health 2022; 9: e36430 10.2196/36430
  • 14 Roe D, Drake RE, Slade M. Routine outcome monitoring: An international endeavour. Int Rev Psychiatry Abingdon Engl 2015; 27: 257-260
  • 15 Aboraya A, Nasrallah HA, Elswick DE. et al Measurement-based Care in Psychiatry — Past, Present, and Future. Innov Clin Neurosci 2018; 15: 13-26
  • 16 Wiegmann C, Quinlivan E, Michnevich T. et al A digital patient-reported outcome (electronic patient-reported outcome) system for patients with severe psychiatric disorders: User-centered development study and study protocol of a multicenter-controlled trial. Digit Health. 2023; 9 20552076231191009 doi. 10.1177/20552076231191009
  • 17 Basch E, Schrag D, Henson S. et al Effect of Electronic Symptom Monitoring on Patient-Reported Outcomes Among Patients With Metastatic Cancer: A Randomized Clinical Trial. JAMA 2022; 327: 2413
  • 18 McAleavey AA, Nordberg SS, Moltu C. Initial quantitative development of the Norse Feedback system: a novel clinical feedback system for routine mental healthcare. Qual Life Res 2021; 30: 3097-3115
  • 19 Vitger T, Hjorthøj C, Austin SF. et al A Smartphone App to Promote Patient Activation and Support Shared Decision-making in People With a Diagnosis of Schizophrenia in Outpatient Treatment Settings (Momentum Trial): Randomized Controlled Assessor-Blinded Trial. J Med Internet Res 2022; 24: e40292
  • 20 Meyer A, Austin SF, Vitger T. et al “I was able to share more details”: The experiences of using a smartphone application to support shared decision making in young people with psychosis Psychiatr Rehabil J. 2024 10.1037/prj0000616.
  • 21 Fiorillo A, Barlati S, Bellomo A. et al The role of shared decision-making in improving adherence to pharmacological treatments in patients with schizophrenia: a clinical review. Ann Gen Psychiatry 2020; 19: 43
  • 22 Aguilera A, Bruehlman-Senecal E, Demasi O. et al Automated Text Messaging as an Adjunct to Cognitive Behavioral Therapy for Depression: A Clinical Trial. J Med Internet Res 2017; 19: e148
  • 23 Cullen BA, Rodriguez K, Eaton WW. et al Clinical outcomes from the texting for relapse prevention (T4RP) in schizophrenia and schizoaffective disorder study. Psychiatry Res 2020; 292: 113346
  • 24 Lewis S, Ainsworth J, Sanders C. et al Smartphone-Enhanced Symptom Management In Psychosis: Open, Randomized Controlled Trial. J Med Internet Res 2020; 22: e17019 10.2196/17019
  • 25 Faurholt-Jepsen M, Frost M, Christensen EM. et al The effect of smartphone-based monitoring on illness activity in bipolar disorder: the MONARCA II randomized controlled single-blinded trial. Psychol Med 2020; 50: 838-848
  • 26 Pratt SI, Naslund JA, Wolfe RS. et al Automated telehealth for managing psychiatric instability in people with serious mental illness. J Ment Health 2015; 24: 261-265
  • 27 Barrio P, Ortega L, López H. et al Self-management and Shared Decision-Making in Alcohol Dependence via a Mobile App: a Pilot Study. Int J Behav Med 2017; 24: 722-727
  • 28 Lukas CA, Blechert J, Berking M. A smartphone application to reduce problematic drinking: a feasibility trial. Pilot Feasibility Stud 2024; 10: 34
  • 29 Barkham M, De Jong K, Delgadillo J. et al Routine Outcome Monitoring (ROM) and Feedback: Research Review and Recommendations. Psychother Res J Soc Psychother Res 2023; 33: 841-855
  • 30 Harmon SC, Lambert MJ, Smart DM. et al Enhancing outcome for potential treatment failures: Therapist–client feedback and clinical support tools. Psychother Res 2007; 17: 379-392
  • 31 McAleavey AA, De Jong K, Nissen-Lie HA. et al Routine Outcome Monitoring and Clinical Feedback in Psychotherapy: Recent Advances and Future Directions. Adm Policy Ment Health Ment Health Serv Res 2024; 51: 291-305
  • 32 Michnevich T, Machleid F, Huang L. et al Remote measurement-based care (RMBC) interventions for mental health – systematic review and meta-analysis JMIR mHealth and uHealth submitted. https://preprints.jmir.org/preprint/63088
  • 33 Loots E, Goossens E, Vanwesemael T. et al Interventions to Improve Medication Adherence in Patients with Schizophrenia or Bipolar Disorders: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2021; 18: 10213 10.3390/ijerph181910213
  • 34 Krägeloh CU, Czuba KJ, Billington DR. et al Using feedback from patient-reported outcome measures in mental health services: a scoping study and typology. Psychiatr Serv Wash DC 2015; 66: 224-241
  • 35 Guidi J, Brakemeier E-L, Bockting CLH. et al Methodological Recommendations for Trials of Psychological Interventions. Psychother Psychosom 2018; 87: 276-284
  • 36 Fortney JC, Unützer J, Wrenn G. et al A Tipping Point for Measurement-Based Care. Psychiatr Serv 2017; 68: 179-188
  • 37 Guo T, Xiang Y-T, Xiao L. et al Measurement-Based Care Versus Standard Care for Major Depression: A Randomized Controlled Trial With Blind Raters. Am J Psychiatry 2015; 172: 1004-1013
  • 38 Zhu M, Hong RH, Yang T. et al The Efficacy of Measurement-Based Care for Depressive Disorders: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Psychiatry 2021; 82
  • 39 Ridout K, Vanderlip E. Resource Document on Implementation of Measurement-Based Care. 2023
  • 40 Ärztliches Zentrum Für Qualität In Der Medizin (ÄZQ). Nationale VersorgungsLeitlinie Unipolare Depression - Leitlinienreport. Bundesärztekammer (BÄK); Kassenärztliche Bundesvereinigung (KBV); Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF); 2022
  • 41 Gaebel W, Hasan A, Falkai P. Hrsg. S3-Leitlinie Schizophrenie. Berlin: Springer; 2019
  • 42 Gire N, Caton N, McKeown M. et al ‘Care co-ordinator in my pocket’: a feasibility study of mobile assessment and therapy for psychosis (TechCare) 2021; doi:10.1136/bmjopen-2020-046755.
  • 43 Bartels SL, Van Zelst C, Melo Moura B. et al Feedback based on experience sampling data: Examples of current approaches and considerations for future research. Heliyon 2023; 9: e20084
  • 44 Bos FM, Von Klipstein L, Emerencia AC. et al A Web-Based Application for Personalized Ecological Momentary Assessment in Psychiatric Care: User-Centered Development of the PETRA Application. JMIR Ment Health 2022; 9: e36430 10.2196/36430
  • 45 Boswell JF, Hepner KA, Lysell K. et al The need for a measurement-based care professional practice guideline. Psychotherapy 2023; 60: 1-16
  • 46 Mavandadi S, Benson A, DiFilippo S. et al A Telephone-Based Program to Provide Symptom Monitoring Alone vs Symptom Monitoring Plus Care Management for Late-Life Depression and Anxiety: A Randomized Clinical Trial. JAMA Psychiatry 2015; 72: 1211
  • 47 Insel TR. Digital Phenotyping: Technology for a New Science of Behavior. JAMA 2017; 318: 1215
  • 48 Mohr DC, Zhang M, Schueller SM. Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning. Annu Rev Clin Psychol 2017; 13: 23-47
  • 49 Baumel A, Muench F, Edan S. et al Objective User Engagement With Mental Health Apps: Systematic Search and Panel-Based Usage Analysis. J Med Internet Res 2019; 21: e14567 10.2196/14567
  • 50 Fleming T, Bavin L, Lucassen M. et al Beyond the Trial: Systematic Review of Real-World Uptake and Engagement With Digital Self-Help Interventions for Depression, Low Mood, or Anxiety. J Med Internet Res 2018; 20: e199