intensiv 2025; 33(01): 12-15
DOI: 10.1055/a-2442-4985
Intensivpflege
Evidence-Based Nursing

Entscheidungsunterstützungssysteme – der Weg zu mehr Evidenz am Patientenbett?

Florian Kücking

Auf Intensivstationen ist die evidenzbasierte Pflege von zentraler Bedeutung, um die Patientensicherheit und eine stets gute Behandlungsqualität zu gewährleisten. Klinische Entscheidungsunterstützungssysteme könnten hierbei als wertvolles Vehikel dienen, indem sie aktuelle Forschungsergebnisse und praktische Evidenz direkt in den Pflegeprozess integrieren. Aber was gilt es bei der Implementierung zu beachten?



Publication History

Article published online:
03 January 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Sackett DL, Rosenberg WMC, Gray JAM. et al Evidence based medicine: What it is and what it isn’t. BMJ 1996; 312: 71
  • 2 Hensen P. Versorgungsqualität und Versorgungssicherheit. In: Hensen P (Hrsg.). Qualitätsmanagement im Gesundheitswesen: Grundlagen für Studium und Praxis. Wiesbaden: Springer Fachmedien; 2022: S. 487-528
  • 3 Melnyk BM, Newhouse R. Evidence-based practice versus evidence-informed practice: A debate that could stall forward momentum in improving healthcare quality, safety, patient outcomes, and costs. Worldviews Ev Based Nurs 2014; 11: 347-9
  • 4 Upton DJ. How can we achieve evidence-based practice if we have a theory-practice gap in nursing today?. J Adv Nurs 1999; 29: 549-55
  • 5 Hartung S. Praxisbasierte Evidenz. In: Schmidt-Semisch H, Schorb F (Hrsg.). Public Health. Wiesbaden: Springer Fachmedien; 2021: S. 349-69
  • 6 Wilson KM, Brady TJ, Lesesne C. An organizing framework for translation in public health: The knowledge to action framework. Prev Chronic Dis 2011; 8 (02) A46
  • 7 Burns PB, Rohrich RJ, Chung KC. The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg 2011; 128 (01) 305-10
  • 8 Alper BS, Haynes RB. EBHC pyramid 5.0 for accessing preappraised evidence and guidance. Evid Based Med 2016; 21: 123-25
  • 9 Behrens J, Langer G. Evidence based Nursing and Caring – Methoden und Ethik der Pflegepraxis und Versorgungsforschung. 5. Aufl. Göttingen: Hogrefe; 2021
  • 10 Mebrahtu TF, Skyrme S, Randell R. et al Effects of computerised clinical decision support systems (CDSS) on nursing and allied health professional performance and patient outcomes: A systematic review of experimental and observational studies. BMJ Open 2021; 11: e053886
  • 11 Rotegård AK, Christensen B. Clinical decision support: The technology and art of providing support where the clinicians need it. In: Hübner UH, Mustata Wilson G, Morawski TS et al. (Hrsg.). Nursing Informatics. Cham: Springer International Publishing; 2022: S. 303-319
  • 12 Chen W, O’Bryan CM, Gorham G. et al Barriers and enablers to implementing and using clinical decision support systems for chronic diseases: A qualitative systematic review and meta-aggregation. Implement Sci Commun 2022; 3: 81
  • 13 Westerbeek L, Ploegmakers KJ, de Bruijn GJ. et al Barriers and facilitators influencing medication-related CDSS acceptance according to clinicians: A systematic review. Int J Medical Informatics 2021; 152: 104506
  • 14 Meunier PY, Raynaud C, Guimaraes E. et al Barriers and facilitators to the use of clinical decision support systems in primary care: A mixed-methods systematic review. Ann Fam Med 2023; 21: 57-69
  • 15 Wright A, Sittig DF. A four-phase model of the evolution of clinical decision support architectures. Int J Medical Informatics 2008; 77: 641-9
  • 16 Berner ES, La Lande TJ. Overview of clinical decision support systems. In: Berner ES (Hrsg.). Clinical Decision Support Systems: Theory and Practice. Cham: Springer International Publishing; 2016: 1-17
  • 17 Steinwendner J. Klinische Entscheidungsunterstützungssysteme: von der Datenrepräsentation zur künstlichen Intelligenz. In: Pfannstiel MA, Kassel K, Rasche C (Hrsg.). Innovationen und Innovationsmanagement im Gesundheitswesen. Wiesbaden: Springer Fachmedien; 2020: 683-699
  • 18 Sutton RT, Pincock D, Baumgart DC. et al An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit Med 2020; 3: 17
  • 19 Osop H, Sahama T. Systems design framework for a practice- based evidence approached clinical decision support systems. In: Proceedings of the Australasian Computer Science Week Multiconference. Sydney NSW Australia: ACM; 2019: 1-6
  • 20 Semler S, Wissing F, Heyder R. German medical informatics initiative: A national approach to integrating health data from patient care and medical research. Methods Inf Med 2018; 57: e50-e56
  • 21 Venkatesh V, Morris MG, Davis GB. et al User acceptance of information technology: Toward a unified view. MIS Quarterly 2003; 27: 425
  • 22 Kücking F, Zukunft S, Schell H. et al What determines the use of clinical decision support systems in nursing? Results of a multiple regression analysis. Stud Health Technol Inform 2024; 317: 281-8
  • 23 Dahmke H, Fiumefreddo R, Schuetz P. et al Tackling alert fatigue with a semi-automated clinical decision support system: Quantitative evaluation and end-user survey. Swiss Med Wkly 2023; 153: 40082
  • 24 Goddard K, Roudsari A, Wyatt JC. Automation bias: A systematic review of frequency, effect mediators, and mitigators. J Am Med Inform Assoc 2012; 19: 121-7
  • 25 Goddard K, Roudsari A, Wyatt JC. Automation bias: Empirical results assessing influencing factors. Int J Medical Informatics 2014; 83: 368-75
  • 26 Kücking F, Hübner U, Przysucha M. et al Automation bias in AI-decision support: Results from an empirical study. Stud Health Technol Inform 2024; 317: 298-304
  • 27 Kiseleva A, Kotzinos D, De Hert P. Transparency of AI in healthcare as a multilayered system of accountabilities: Between legal requirements and technical limitations. Front Artif Intell 2022; 5: 879603