Subscribe to RSS
DOI: 10.1055/a-2493-3436
Consecutive Sonogashira–Suzuki–Michael Cyclization: Three-Component Synthesis of Phenanthridines and Benzo[c]chromenes
The authors gratefully acknowledge financial support by the Fonds der Chemischen Industrie.

Dedicated to Prof. Dr. Hans-Ulrich Reissig on the occasion of his 75th birthday
Abstract
The equistoichiometric three-component reaction of an acid chloride, an alkyne, and an ortho-amino- or ortho-hydroxyphenylboronic ester proceeds smoothly to give phenanthridines or benzo[c]chromenes, respectively, with good to quantitative yields in the sense of a Sonogashira–Suzuki–Michael cyclization sequence. In the coupling of ortho-amidophenylboronates, interestingly, after ring closure a subsequent an acyl migration occurs to give 6-(2-(acyloxy)vinyl)phenanthridines.
Key word
alkynylation - catalysis - multicomponent reaction - Michael addition - phenanthridines - benzo[c]chromenes - rearrangement - palladiumSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2493-3436.
- Supporting Information
Publication History
Received: 18 October 2024
Accepted after revision: 29 November 2024
Accepted Manuscript online:
29 November 2024
Article published online:
02 January 2025
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Pictet A, Ankersmit HJ. Ber. Dtsch. Chem. Ges. 1889; 22: 3339
- 2a Talukdar V, Vijayan A, Kumar Katari N, Radhakrishnan KV, Das P. Adv. Synth. Catal. 2021; 363: 1202
- 2b Tumir LM, Radic Stojkovic M, Piantanida I. Beilstein J. Org. Chem. 2014; 10: 2930
- 2c Bisai V, Saina Shaheeda MK, Gupta A, Bisai A. Asian J. Org. Chem. 2019; 8: 946
- 3 Huang WJ, Chen ZP, Liu LX, Zhou YG, Wu B, Jiang GF. J. Heterocycl. Chem. 2022; 59: 1116
- 4 Bondarev SL, Knyukshto VN, Tikhomirov SA, Pyrko AN. Opt. Spectrosc. 2006; 100: 386
- 5 Park GY, Wilson JJ, Song Y, Lippard SJ. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 11987
- 6 Miao F, Yang XJ, Zhou L, Hu HJ, Zheng F, Ding XD, Sun DM, Zhou CD, Sun W. Nat. Prod. Res. 2011; 25: 863
- 7 Eun JP, Koh GY. Biochem. Biophys. Res. Commun. 2004; 317: 618
- 8 Eles J, Beke G, Vago I, Bozo E, Huszar J, Tarcsay A, Kolok S, Schmidt E, Vastag M, Hornok K, Farkas S, Domany G, Keseru GM. Bioorg. Med. Chem. Lett. 2012; 22: 3095
- 9 Pictet A, Hubert A. Ber. Dtsch. Chem. Ges. 1896; 29: 1182
- 10 Morgan GT, Walls LP. J. Chem. Soc. 1931; 2447
- 11 López-Mendoza P, Miranda LD. Org. Biomol. Chem. 2020; 18: 3487
- 12 Wu D.-E, Lu X.-L, Xia M. New J. Chem. 2015; 39: 6465
- 13 Nagode SB, Kant R, Rastogi N. Chem. Asian. J. 2020; 15: 3513
- 14a Simon-Levert A, Menniti C, Soulere L, Geneviere AM, Barthomeuf C, Banaigs B, Witczak A. Mar. Drugs 2010; 8: 347
- 14b Abe H, Nishioka K, Takeda S, Arai M, Takeuchi Y, Harayama T. Tetrahedron Lett. 2005; 46: 3197
- 15a Mahedevan A, Siegel C, Martin BR, Abood ME, Beletskaya I, Razdan RK. J. Med. Chem. 2000; 43: 3778
- 15b Garino C, Bihel F, Pietrancosta N, Laras Y, Quelever G, Woo I, Klein P, Bain J, Boucher JL, Kraus JL. Bioorg. Med. Chem. Lett. 2005; 15: 135
- 15c Sun W, Cama LD, Birzin ET, Warrier S, Locco L, Mosley R, Hammond ML, Rohrer SP. Bioorg. Med. Chem. Lett. 2006; 16: 1468
- 16 Yanai H, Taguchi T. Chem. Commun. 2012; 48: 8967
- 17 Mo H, Pan C, Chen D, Chen D, Gao J, Yang J. RSC Adv. 2015; 5: 57462
- 18 Karpov AS, Romiger F, Müller TJ. J. J. Org. Chem. 2003; 68: 1503
- 19 Schmitz GH, Lampiri P, Müller TJ. J. Synlett 2023; 34: 1781
- 20 CCDC 2390820 contains the supplementary crystallographic data for this paper. The data are provided free of charge by the joint Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures and Fachinformationszentrum Karlsruhe Access Structures service
- 21a Müller TJ. J. Top. Organomet. Chem. 2006; 19: 149
- 21b Lessing T, Müller TJ. J. Appl. Sci. 2015; 5: 1803
- 22a Das S, Hong D, Chen Z, She Z, Hersh WH, Subramaniam G, Chen Y. Org. Lett. 2015; 17: 5578
- 22b Madden KS, Laroche B, David S, Batsanov AS, Thompson D, Knowles JP, Whiting A. Eur. J. Org. Chem. 2018; 2018: 5312
- 23 Ohtomo Y, Ishiwata K, Hashimoto S, Kuroiwa T, Tahara K. J. Org. Chem. 2021; 86: 13198
- 24 Zhou F, Driver TG. Org. Lett. 2014; 16: 2916
- 25 Håheim KS, Lund BA, Sydnes MO. Eur. J. Org. Chem. 2023; 26: e202300137
- 26 Wang YM, Wu J, Hoong C, Rauniyar V, Toste FD. J. Am. Chem. Soc. 2012; 134: 12928
- 27 Hu Q, Zhu C, Hankins RA, Murmello AR, Marrs GS, Lukesh JC. III. J. Am. Chem. Soc. 2023; 145: 25486
- 28 Halford-McGuff JM, Israel EM, West MJ, Vantourout JC, Watson AJ. B. Eur. J. Org. Chem. 2022; 2022: e202200993
- 29 Youn SW, Ko TY, Jang YH. Angew. Chem. Int. Ed. 2017; 56: 6636
- 30a Liu Y, Zhou B, Jin H, Liu D. Synthesis 2020; 52: 1417
- 30b Marsella MJ, Wang Z.-Q, Reid RJ, Yoon K. Org. Lett. 2001; 3: 885
- 31 Zhang J, Wang Y, Zhou X. Chem. Commun. 2023; 59: 3253
- 32 Sheldrick GM. Acta Crystallogr., Sect. A: Found. Adv. 2015; 71: 3
- 33 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339