Subscribe to RSS
DOI: 10.1055/a-2515-0351
Doyle–Kirmse Reaction of S-Allyl and S-Propargyl Phosphorothioates
The authors acknowledge the financial support from the Ministère de l’Enseignement Supérieur et de la Recherche (doctoral grant to L.T. and C.R.), the Centre National de la Recherche Scientifique (CNRS) and the University of Strasbourg. This work has been published under the framework of the IdEx Unistra and benefits from a funding from the state managed by the Agence Nationale de la Recherche (French National Research Agency) as part of the Investments for the Future Program (postdoctoral grant to T.M.).

Abstract
The Doyle–Kirmse reaction represents a powerful synthetic tool for forming both C–S and C–C bonds in a single process. The rhodium-catalyzed Doyle–Kirmse reaction of S-allyl and S-propargyl phosphorothioates with diazoesters has been developed and represents a rare example involving substrates bearing an electron-withdrawing group on the sulfur atom. The transformation takes place at room temperature, in only 5 minutes, and leads via a [2,3]-sigmatropic rearrangement of the sulfonium ylide intermediate to the corresponding S-homoallyl or S-homoallenyl phosphorothioates in yields ranging from 25% to 92% (19 examples).
Key words
Doyle–Kirmse reaction - [2,3]-rearrangement - propargyl sulfides - allyl sulfides - diazoesters - phosphorothioates - C–S bond formationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2515-0351.
- Supporting Information
Publication History
Received: 22 November 2024
Accepted after revision: 11 January 2025
Accepted Manuscript online:
11 January 2025
Article published online:
25 February 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Doyle MP. Chem. Rev. 1986; 86: 919
- 1b Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
- 1c Sulfur-Mediated Rearrangements II. In Topics in Current Chemistry, Vol. 275. Schaumann E. Springer; Berlin/Heidelberg/New York: 2007
- 1d Neuhaus JD, Oost R, Merad J, Maulide N. Top. Curr. Chem. 2018; 376: 15
- 1e West TH, Spoehrle SS. M, Kasten K, Taylor JE, Smith AD. ACS Catal. 2015; 5: 7446
- 1f Jana S, Guo Y, Koenigs RM. Chem. Eur. J. 2021; 27: 1270
- 1g Shi C.-Y, Zhou B, Teng M.-Y, Ye L.-W. Synthesis 2023; 55: 3895
- 1h Hommelsheim R, Guo Y, Yang Z, Empel C, Koenigs RM. Angew. Chem. Int. Ed. 2019; 58: 1203
- 1i Orłowska K, Rybicka-Jasinśka K, Krajewski P, Gryko D. Org. Lett. 2020; 22: 1018
- 2 Zhang Z, Sheng Z, Yu W, Wu G, Zhang R, Chu W.-D, Zhang Y, Wang J. Nat. Chem. 2017; 9: 970
- 3 Rognan C, Locquet P, Pertschi R, Girard N, Gulea M. Adv. Synth. Catal. 2024; 366: 4078
- 4 Liu X.-S, Tang Z, Li Z, Li M, Xu L, Liu L. Nat. Commun. 2021; 12: 7298
- 5a Ung SP.-M, Li C.-J. RSC Sustainability 2023; 1: 11
- 5b Quin LD. A Guide to Organophosphorus Chemistry . Wiley Interscience; New York: 2000
- 6a Eckstein F. Antisense Nucleic Acid Drug Dev. 2000; 10: 117
- 6b Zhang S, Zhang M.-H, Feng S, Zhang W.-J, Zhu Y.-Y, Li Z.-W, Bai S. Chem. Pap. 2024; 78: 4045
- 7a Jones DJ, O’Leary EM, O’Sullivan TP. Tetrahedron Lett. 2018; 59: 4279
- 7b Gulea M. Adv. Org. Synth. 2018; 12: 117
- 8a Jones DJ, O’Leary EM, O’Sullivan TP. Adv. Synth. Catal. 2020; 362: 2801
- 8b Zheng H, Peng J, Liu X, Zhao P. Adv. Synth. Catal. 2024; 366: 3739
- 9 Huang M, Ye Z, Xu W, Xu M.-H. Asian J. Org. Chem. 2023; 12: e202300053
- 10a Masson S, Saquet M, Marchand P. Tetrahedron 1998; 54: 1523
- 10b Philippitsch V, Hammerschmidt F. Org. Biomol. Chem. 2011; 9: 5220
- 11a Mattiza JT, Fohrer JG. G, Duddeck H, Gardiner MG, Ghanem A. Org. Biomol. Chem. 2011; 9: 6542
- 11b Zhu D, Ma J, Luo K, Fu H, Zhang L, Zhu S. Angew. Chem. Int. Ed. 2016; 55: 8452
- 12 Davies PW, Albrecht SJ.-C, Assanelli G. Org. Biomol. Chem. 2009; 7: 1276
See, for examples:
For anionic S-to-C phosphoryl group migration, see: