RSS-Feed abonnieren
DOI: 10.1055/a-2550-4502
MRI-based L1 Vertebral Bone Quality Scores Predict Cage Subsidence Following Transforaminal Lumbar Interbody Fusion Similar to L1 CT Hounsfield Units
MRT-basierte L1-Wirbelknochenqualitätsscores sagen das Cage-Subsidenzrisiko nach transforaminaler lumbaler Interbody-Fusion ähnlich wie L1-CT-Hounsfield-Einheiten vorher Gefördert durch: National Key R&D Program of China 2023YFC2507700/2023YFC2507701Gefördert durch: Projects of the Science and Technology Department of Sichuan Province 2022ZDZX0029
Gefördert durch: Sichuan Science and Technology Program 2024NSFSC1816
Gefördert durch: the 1·3·5 project for disciplines of excellence Clinical Research Incubation Project, West China Hospital, Sichuan University 2021HXFH003
Gefördert durch: Sichuan Provincial Medical Association Special Research Fund 2021SAT05, 2019HR18,2023SAT06

Abstract
Background
Cage subsidence is one of the most common complications after transforaminal lumbar interbody fusion (TLIF) and correlates with inferior bone quality. Studies have reported L1 vertebral bone quality score (VBQ) based on MRI to be a promising alternative to evaluating preoperative bone quality. However, to the knowledge of the authors, no study has examined the correlation between L1 VBQ scores and cage subsidence after TLIF.
Purpose
The purpose of the study was (1) to assess the interrelation between the L1 VBQ score and cage subsidence after TLIF; and (2) to compare L1 VBQ and L1 CT Hounsfield Unit (HU) values in predicting cage subsidence after TLIF.
Methods
We reviewed patients who had undergone TLIF at one institution between 2012 to 2021. Cage subsidence was measured using postoperative lumbar CT based on cage protrusion through the endplates at more than 2 mm. The L1 VBQ score was calculated by dividing mean L1 signal intensity (SI) by mean SI of the cerebrospinal fluid (CSF) at L1. The L1 HU value representing bone mineral density (BMD) was measured using computed tomography. We then performed Student’s t-test for independent samples and logistic regression analyses for statistical analysis. We also conducted receiver operating characteristic (ROC) analysis to assess the predictive ability of the L1 VBQ score and L1 CT HU.
Results
Of 233 participants, cage subsidence was observed in 41 patients (17.6%). Comparison between the characteristics of patients between the group with subsidence and the group without subsidence revealed significant differences in the age, VBQ score, and L1 CT HU. Multivariate logistic regression showed that higher L1 VBQ score (OR = 2.499, 95% CI: 1.205–5.180, p = 0.014) and lower L1 CT HU (OR = 0.960, 95% CI: 0.933–0.987, p = 0.005) were associated with an increased rate of cage subsidence. Area under the curve (AUC) analysis of the L1 VBQ score returned 0.735 (95% CI: 0.620–0.850) and the suitable threshold was 3.424 (sensitivity: 82.9%, specificity: 70.7%). The AUC of L1 CT HU was 0.747 (95% CI: 0.642–0.852) and the suitable threshold was 136.5 (sensitivity: 85.4%, specificity: 56.1%).
Conclusions
The present study demonstrates that L1 VBQ score and L1 CT HU are reliable predictors with similar performance for cage subsidence after TLIF.
Zusammenfassung
Hintergrund
Cage-Sinterung ist eine der häufigsten Komplikationen nach transforaminaler lumbaler interkorporeller Fusion (TLIF) und korreliert mit minderwertiger Knochenqualität. Studien haben gezeigt, dass der L1-Wirbelknochen-Qualitätsscore (VBQ) basierend auf MRT als vielversprechende Alternative zur Beurteilung der präoperativen Knochenqualität berichtet wurde. Allerdings wurde nach dem Wissen der Autoren keine Korrelation zwischen L1-VBQ-Scores und Cage-Sinterung nach TLIF untersucht.
Zweck
Beurteilung (1) des Zusammenhangs zwischen dem L1-VBQ-Score und Cage-Sinterung nach TLIF; (2) Vergleich der Werte von L1-VBQ und L1-CT-Hounsfield Unit (HU) bei der Vorhersage der Cage-Sinterung nach TLIF.
Methoden
Wir untersuchten Patienten, die zwischen 2012 und 2021 an einer Institution einer TLIF unterzogen wurden. Die Cage-Sinterung wurde mittels postoperativer Lumbal-CT gemessen, basierend auf Cage-Protrusion durch die Endplatten von mehr als 2 mm. Der L1-VBQ-Score wurde berechnet, indem die mittlere L1-Signalintensität (SI) durch die mittlere SI des Liquors (CSF) bei L1 dividiert wurde. Der L1-HU-Wert für die Knochenmineraldichte (BMD) der L1-Lendenwirbelsäule wurde mittels Computertomografie gemessen. Es wurden unabhängige Student’s t-Tests und logistische Regressionsanalysen durchgeführt. Darüber hinaus wurde eine ROC-Analyse (ROC: Receiver Operating Curve) durchgeführt, um die Vorhersagefähigkeit des L1-VBQ-Scores und der L1-CT-HU zu beurteilen.
Ergebnisse
Bei 233 Teilnehmern wurde Cage-Sinterung bei 41 Patienten beobachtet (17,6%). Beim Vergleich der Merkmale der Patienten zwischen der Gruppe mit Cage-Sinterung und der Gruppe ohne Cage-Sinterung wurden signifikante Unterschiede bezüglich Alter, VBQ-Score und L1-CT-HU festgestellt. Multivariate logistische Regressionen zeigten, dass ein höherer L1-VBQ-Score (OR = 2,499, 95%-KI: 1,205–5,180; p = 0,014) und eine niedrigere L1-CT-HU (OR = 0,960, 95%-KI: 0,933–0,987; p = 0,005) mit einer erhöhten Rate der Cage-Sinterung assoziiert waren. Die AUC-Analyse (AUC: Bereich unter der Kurve) des L1-VBQ-Scores betrug 0,735 (95%-KI: 0,620–0,850) und der geeignete Schwellenwert war 3,424 (Sensitivität: 82,9%, Spezifität: 70,7%). Die AUC der L1-CT-HU betrug 0,747 (95%-KI: 0,642–0,852) und der geeignete Schwellenwert war 136,5 (Sensitivität: 85,4%, Spezifität: 56,1%).
Schlussfolgerungen
Diese Studie zeigt, dass sowohl der L1-VBQ-Score als auch der L1-CT-HU zuverlässige Prädiktoren für Cage-Sinterung nach TLIF sind. Diese beiden Messmethoden sind ähnlich leistungsfähig bei der Vorhersage der Cage-Sinterung.
Publikationsverlauf
Eingereicht: 05. November 2024
Angenommen nach Revision: 03. März 2025
Artikel online veröffentlicht:
03. April 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Kirnaz S, Capadona C, Wong T. et al. Fundamentals of Intervertebral Disc Degeneration. World Neurosurg 2022; 157: 264-273
- 2 Ravindra VM, Senglaub SS, Rattani A. et al. Degenerative Lumbar Spine Disease: Estimating Global Incidence and Worldwide Volume. Global Spine J 2018; 8: 784-794
- 3 Luoma K, Riihimäki H, Luukkonen R. et al. Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976) 2000; 25: 487-492
- 4 Saifi C, Cazzulino A, Laratta J. et al. Utilization and Economic Impact of Posterolateral Fusion and Posterior/Transforaminal Lumbar Interbody Fusion Surgeries in the United States. Global Spine J 2019; 9: 185-190
- 5 Salehi SA, Tawk R, Ganju A. et al. Transforaminal lumbar interbody fusion: surgical technique and results in 24 patients. Neurosurgery 2004; 54: 368-374
- 6 de Kunder SL, van Kuijk SMJ, Rijkers K. et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J 2017; 17: 1712-1721
- 7 Poppenborg P, Liljenqvist U, Gosheger G. et al. Complications in TLIF spondylodesis-do they influence the outcome for patients? A prospective two-center study. Eur Spine J 2021; 30: 1320-1328
- 8 McDonnell MF, Glassman SD, Dimar JR. et al. Perioperative complications of anterior procedures on the spine. J Bone Joint Surg Am 1996; 78: 839-847
- 9 Lee N, Kim KN, Yi S. et al. Comparison of Outcomes of Anterior, Posterior, and Transforaminal Lumbar Interbody Fusion Surgery at a Single Lumbar Level with Degenerative Spinal Disease. World Neurosurg 2017; 101: 216-226
- 10 Yao Y-C, Chou P-H, Lin H-H. et al. Risk Factors of Cage Subsidence in Patients Received Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine (Phila Pa 1976) 2020; 45: E1279-E1285
- 11 Le TV, Baaj AA, Dakwar E. et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976) 2012; 37: 1268-1273
- 12 Marchi L, Abdala N, Oliveira L. et al. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine 2013; 19: 110-118
- 13 Fukuta S, Miyamoto K, Hosoe H. et al. Kidney-type intervertebral spacers should be located anteriorly in cantilever transforaminal lumbar interbody fusion: analyses of risk factors for spacer subsidence for a minimum of 2 years. J Spinal Disord Tech 2011; 24: 189-195
- 14 Morgan SL, Prater GL. Quality in dual-energy X-ray absorptiometry scans. Bone 2017; 104: 13-28
- 15 Izadyar S, Golbarg S, Takavar A. et al. The Effect of the Lumbar Vertebral Malpositioning on Bone Mineral Density Measurements of the Lumbar Spine by Dual-Energy X-Ray Absorptiometry. J Clin Densitom 2016; 19: 277-281
- 16 Muraki S, Yamamoto S, Ishibashi H. et al. Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporos Int 2004; 15: 724-728
- 17 Curry SJ, Krist AH, Owens DK. et al. Screening for Osteoporosis to Prevent Fractures: US Preventive Services Task Force Recommendation Statement. JAMA 2018; 319: 2521-2531
- 18 Neuner JM, Binkley N, Sparapani RA. et al. Bone density testing in older women and its association with patient age. J Am Geriatr Soc 2006; 54: 485-489
- 19 Schreiber JJ, Anderson PA, Hsu WK. Use of computed tomography for assessing bone mineral density. Neurosurg Focus 2014; 37: E4
- 20 Zou D, Li W, Deng C. et al. The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases. Eur Spine J 2019; 28: 1758-1766
- 21 Zou D, Muheremu A, Sun Z. et al. Computed tomography Hounsfield unit-based prediction of pedicle screw loosening after surgery for degenerative lumbar spine disease. J Neurosurg Spine 2020; 32: 716-721
- 22 Zou D, Sun Z, Zhou S. et al. Hounsfield units value is a better predictor of pedicle screw loosening than the T-score of DXA in patients with lumbar degenerative diseases. Eur Spine J 2020; 29: 1105-1111
- 23 Liu D, Kadri A, Hernando D. et al. MRI-based vertebral bone quality score: relationship with age and reproducibility. Osteoporos Int 2023; 34: 2077-2086
- 24 Sabatier JP, Guaydier-Souquieres G. Noninvasive methods of bone-mass measurement. Clin Rheumatol 1989; 8: 41-45
- 25 Ehresman J, Pennington Z, Schilling A. et al. Novel MRI-based score for assessment of bone density in operative spine patients. Spine J 2020; 20: 556-562
- 26 Salzmann SN, Okano I, Jones C. et al. Preoperative MRI-based vertebral bone quality (VBQ) score assessment in patients undergoing lumbar spinal fusion. Spine J 2022; 22: 1301-1308
- 27 Kim AYE, Lyons K, Sarmiento M. et al. MRI-Based Score for Assessment of Bone Mineral Density in Operative Spine Patients. Spine (Phila Pa 1976) 2023; 48: 107-112
- 28 Soliman MAR, Aguirre AO, Kuo CC. et al. Vertebral bone quality score independently predicts cage subsidence following transforaminal lumbar interbody fusion. Spine J 2022; 22: 2017-2023
- 29 Ai Y, Chen Q, Huang Y. et al. MRI-based vertebral bone quality score for predicting cage subsidence by assessing bone mineral density following transforaminal lumbar interbody fusion: a retrospective analysis. Eur Spine J 2023; 32: 3167-3175
- 30 Hu YH, Yeh YC, Niu CC. et al. Novel MRI-based vertebral bone quality score as a predictor of cage subsidence following transforaminal lumbar interbody fusion. J Neurosurg Spine 2022; 37: 654-662
- 31 Liu D, Kadri A, Hernando D. et al. MRI-based vertebral bone quality score: relationship with age and reproducibility. Osteoporos Int 2023; 34: 2077-2086
- 32 Li W, Zhu H, Tian H. et al. Combinations of two imaging parameters to improve bone mineral density (BMD) assessment in patients with lumbar degenerative diseases. BMC Musculoskelet Disord 2023; 24: 747
- 33 Kadri A, Binkley N, Hernando D. et al. Opportunistic Use of Lumbar Magnetic Resonance Imaging for Osteoporosis Screening. Osteoporos Int 2022; 33: 861-869
- 34 Jang S, Graffy PM, Ziemlewicz TJ. et al. Opportunistic Osteoporosis Screening at Routine Abdominal and Thoracic CT: Normative L1 Trabecular Attenuation Values in More than 20 000 Adults. Radiology 2019; 291: 360-367
- 35 Pisano AJ, Fredericks DR, Steelman T. et al. Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence. Neurosurg Focus 2020; 49: E9
- 36 Yao YC, Chao H, Kao KY. et al. CT Hounsfield unit is a reliable parameter for screws loosening or cages subsidence in minimally invasive transforaminal lumbar interbody fusion. Sci Rep 2023; 13: 1620
- 37 Skrivankova VW, Richmond RC, Woolf BAR. et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA 2021; 326: 1614-1621
- 38 Charlson ME, Pompei P, Ales KL. et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40: 373-383
- 39 Landham PR, Don AS, Robertson PA. Do position and size matter? An analysis of cage and placement variables for optimum lordosis in PLIF reconstruction. Eur Spine J 2017; 26: 2843-2850
- 40 Zou D, Muheremu A, Sun Z. et al. Computed tomography Hounsfield unit-based prediction of pedicle screw loosening after surgery for degenerative lumbar spine disease. J Neurosurg Spine 2020; 32: 716-721
- 41 Wang MY, Xu L, Qiu Y. et al. [Effect of Modic changes on fusion rate and cage subsidence after transforaminal lumbar interbody fusion]. Zhonghua Yi Xue Za Zhi 2019; 99: 3703-3709
- 42 Xie F, Yang Z, Tu Z. et al. The value of Hounsfield units in predicting cage subsidence after transforaminal lumbar interbody fusion. BMC Musculoskelet Disord 2022; 23: 882
- 43 Ai Y, Zhu C, Chen Q. et al. Comparison of predictive value for cage subsidence between MRI-based endplate bone quality and vertebral bone quality scores following transforaminal lumbar interbody fusion: a retrospective propensity-matched study. Spine J 2024; 24: 1046-1055
- 44 Chen Q, Ai Y, Huang Y. et al. MRI-based Endplate Bone Quality score independently predicts cage subsidence following transforaminal lumbar interbody fusion. Spine J 2023; 23: 1652-1658
- 45 Harris IA, Dantanarayana N, Naylor JM. Spine surgery outcomes in a workers’ compensation cohort. ANZ J Surg 2012; 82: 625-629
- 46 Choi WS, Kim JS, Hur JW. et al. Minimally Invasive Transforaminal Lumbar Interbody Fusion Using Banana-Shaped and Straight Cages: Radiological and Clinical Results from a Prospective Randomized Clinical Trial. Neurosurgery 2018; 82: 289-298
- 47 Chen Z, Lei F, Ye F. et al. Prediction of Pedicle Screw Loosening Using an MRI-Based Vertebral Bone Quality Score in Patients with Lumbar Degenerative Disease. World Neurosurg 2023; 171: e760-e767
- 48 Soliman MAR, Aguirre AO, Kuo CC. et al. A Novel Cervical Vertebral Bone Quality Score Independently Predicts Cage Subsidence After Anterior Cervical Diskectomy and Fusion. Neurosurgery 2023; 92: 779-786
- 49 Huang Y, Chen Q, Liu L. et al. Vertebral bone quality score to predict cage subsidence following oblique lumbar interbody fusion. J Orthop Surg Res 2023; 18: 258
- 50 Kuo CC, Soliman MAR, Aguirre AO. et al. Vertebral Bone Quality Score Independently Predicts Proximal Junctional Kyphosis and/or Failure After Adult Spinal Deformity Surgery. Neurosurgery 2023; 92: 945-954
- 51 Chen E, Xu J, Yang S. et al. Cage Subsidence and Fusion Rate in Extreme Lateral Interbody Fusion with and without Fixation. World Neurosurg 2019; 122: e969-e977
- 52 Zhou Q-S, Chen X, Xu L. et al. Does Vertebral End Plate Morphology Affect Cage Subsidence After Transforaminal Lumbar Interbody Fusion?. World Neurosurg 2019; 130: e694-e701