RSS-Feed abonnieren
DOI: 10.1055/a-2780-1561
From Limb to Brain: Lymphedema as a Systemic Disease with Metabolic, Immunological, and Neurodegenerative Consequences and the Disease-Modifying Potential of Lymphaticovenous Anastomosis—An Integrative Analysis
Autor*innen
Abstract
Lymphedema has traditionally been viewed as a localized disorder characterized by regional fluid accumulation and tissue swelling. However, emerging evidence challenges this paradigm, revealing that lower limb lymphedema induces significant systemic pathophysiological changes. This review synthesizes recent findings demonstrating that lymphedema triggers widespread oxidative stress, chronic inflammation, dysregulated gene expression in circulating monocytes, and contralateral limb muscle edema—even in the absence of clinical lymphedema in the unaffected limb. Furthermore, we examine the potential association between lymphedema and increased Alzheimer's disease (AD) risk through shared mechanisms involving oxidative stress and neuroinflammation. Lymphaticovenous anastomosis (LVA), a minimally invasive supermicrosurgical technique, has emerged as an effective intervention that not only reduces limb volume but also reverses many of these systemic alterations. Studies utilizing advanced imaging techniques, including magnetic resonance volumetry and diffusion tensor imaging, combined with comprehensive biomarker analyses, have documented post-LVA improvements in antioxidant capacity, reduction in oxidative stress markers, normalization of inflammatory cytokines, recovery of dysregulated gene expression patterns, and decreased muscle edema bilaterally. Additionally, preliminary data suggest LVA may reduce AD biomarkers, including tau protein and amyloid-beta levels, while increasing neuroprotective factors such as brain-derived neurotrophic factor. These findings fundamentally redefine lymphedema as a systemic condition with far-reaching metabolic and potentially neurodegenerative consequences, positioning LVA as a therapeutic intervention with benefits extending beyond local symptom control to systemic disease modification.
Keywords
lymphedema - lymphaticovenous anastomosis - oxidative stress - gene expression - muscle edema - Alzheimer's disease - systemic inflammationPublikationsverlauf
Artikel online veröffentlicht:
20. Januar 2026
© 2026. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Rockson SG, Rivera KK. Estimating the population burden of lymphedema. Ann N Y Acad Sci 2008; 1131: 147-154
- 2 Dessources K, Aviki E, Leitao Jr MM. Lower extremity lymphedema in patients with gynecologic malignancies. Int J Gynecol Cancer 2020; 30 (02) 252-260
- 3 Grada AA, Phillips TJ. Lymphedema: pathophysiology and clinical manifestations. J Am Acad Dermatol 2017; 77 (06) 1009-1020
- 4 Rockson SG. Lymphedema, inflammation, and fat. Lymphat Res Biol 2021; 19 (02) 115
- 5 Ghanta S, Cuzzone DA, Torrisi JS. et al. Regulation of inflammation and fibrosis by macrophages in lymphedema. Am J Physiol Heart Circ Physiol 2015; 308 (09) H1065-H1077
- 6 Chang TC, Uen YH, Chou CH, Sheu JR, Chou DS. The role of cyclooxygenase-derived oxidative stress in surgically induced lymphedema in a mouse tail model. Pharm Biol 2013; 51 (05) 573-580
- 7 Siems WG, Brenke R, Beier A, Grune T. Oxidative stress in chronic lymphoedema. QJM 2002; 95 (12) 803-809
- 8 Beier A, Siems W, Brenke R, Grune T. [Increased formation of free radicals in chronic lymphedema]. Z Lymphol 1994; 18 (01) 8-11
- 9 Yang JC, Yen YH, Wu SC, Lin WC, Chiang MH, Hsieh CH. Supermicrosurgical lymphaticovenous anastomosis as an alternative treatment option for patients with lymphorrhea. Plast Reconstr Surg 2019; 144 (05) 1214-1224
- 10 Mihara M, Hara H, Furniss D. et al. Lymphaticovenular anastomosis to prevent cellulitis associated with lymphoedema. Br J Surg 2014; 101 (11) 1391-1396
- 11 Koshima I, Inagawa K, Urushibara K, Moriguchi T. Supermicrosurgical lymphaticovenular anastomosis for the treatment of lymphedema in the upper extremities. J Reconstr Microsurg 2000; 16 (06) 437-442
- 12 Yang JC, Wu SC, Lin WC, Chiang MH, Chiang PL, Hsieh CH. Supermicrosurgical lymphaticovenous anastomosis as an alternative treatment option for moderate-to-severe lower limb lymphedema. J Am Coll Surg 2020; 230 (02) 216-227
- 13 Cha HG, Oh TM, Cho MJ. et al. Changing the paradigm: lymphovenous anastomosis in advanced stage lower extremity lymphedema. Plast Reconstr Surg 2021; 147 (01) 199-207
- 14 Langworth-Green C, Patel S, Jaunmuktane Z. et al. Chronic effects of inflammation on tauopathies. Lancet Neurol 2023; 22 (05) 430-442
- 15 Xie J, Van Hoecke L, Vandenbroucke RE. The impact of systemic inflammation on Alzheimer's disease pathology. Front Immunol 2022; 12: 796867
- 16 Bai R, Guo J, Ye XY, Xie Y, Xie T. Oxidative stress: the core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev 2022; 77: 101619
- 17 Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 2019; 20 (03) 148-160
- 18 Ton AMM, Campagnaro BP, Alves GA. et al. Oxidative stress and dementia in Alzheimer's patients: effects of synbiotic supplementation. Oxid Med Cell Longev 2020; 2020: 2638703
- 19 Conole ELS, Stevenson AJ, Muñoz Maniega S. et al. DNA methylation and protein markers of chronic inflammation and their associations with brain and cognitive aging. Neurology 2021; 97 (23) e2340-e2352
- 20 Tabibiazar R, Cheung L, Han J. et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med 2006; 3 (07) e254
- 21 Yusof KM, Groen K, Rosli R, Avery-Kiejda KA. Crosstalk between microRNAs and the pathological features of secondary lymphedema. Front Cell Dev Biol 2021; 9: 732415
- 22 Navaei M, Haghighat S, Janani L. et al. The effects of synbiotic supplementation on antioxidant capacity and arm volumes in survivors of breast cancer-related lymphedema. Nutr Cancer 2020; 72 (01) 62-73
- 23 Yang JC-S, Huang L-H, Wu S-C. et al. Lymphaticovenous anastomosis supermicrosurgery decreases oxidative stress and increases antioxidant capacity in the serum of lymphedema patients. J Clin Med 2021; 10 (07) 1540
- 24 Yang JC-S, Kuo P-J, Chang C. et al. Linking lymphedema, chronic inflammation, oxidative stress, Alzheimer disease, and potential role of lymphaticovenous anastomosis. Plast Reconstr Surg Glob Open 2025; 13 (07) e6955
- 25 Yang JC-S, Huang L-H, Wu S-C. et al. Recovery of dysregulated genes in cancer-related lower limb lymphedema after supermicrosurgical lymphaticovenous anastomosis—a prospective longitudinal cohort study. J Inflamm Res 2022; 15: 761-773
- 26 Zollbrecht C, Grassl M, Fenk S. et al. Expression pattern in human macrophages dependent on 9p21.3 coronary artery disease risk locus. Atherosclerosis 2013; 227 (02) 244-249
- 27 Mulumba M, Jossart C, Granata R. et al. GPR103b functions in the peripheral regulation of adipogenesis. Mol Endocrinol 2010; 24 (08) 1615-1625
- 28 Li L, Kang H, Zhang Q, D'Agati VD, Al-Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest 2019; 129 (06) 2374-2389
- 29 Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G. The role of the transcription factor EGR1 in cancer. Front Oncol 2021; 11: 642547
- 30 Kidger AM, Rushworth LK, Stellzig J. et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A 2017; 114 (03) E317-E326
- 31 Bi Y, Yuan X, Chen Y, Chang G, Chen G. Expression analysis of genes related to lipid metabolism in peripheral blood lymphocytes of chickens challenged with reticuloendotheliosis virus. Poult Sci 2021; 100 (05) 101081
- 32 Brorson H, Ohlin K, Olsson G, Nilsson M. Adipose tissue dominates chronic arm lymphedema following breast cancer: an analysis using volume rendered CT images. Lymphat Res Biol 2006; 4 (04) 199-210
- 33 Deng A, Ma L, Zhou X, Wang X, Wang S, Chen X. FoxO3 transcription factor promotes autophagy after oxidative stress injury in HT22 cells. Can J Physiol Pharmacol 2021; 99 (06) 627-634
- 34 Nlandu-Khodo S, Osaki Y, Scarfe L. et al. Tubular β-catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight 2020; 5 (10) e135454
- 35 Yang JC-S, Wu S-C, Wang Y-M. et al. Effect of lymphaticovenous anastomosis on muscle edema, limb, and subfascial volume in lower limb lymphedema: MRI studies. J Am Coll Surg 2022; 235 (02) 227-239
- 36 Budzik JF, Balbi V, Verclytte S, Pansini V, Le Thuc V, Cotten A. Diffusion tensor imaging in musculoskeletal disorders. Radiographics 2014; 34 (03) E56-E72
- 37 Heemskerk AM, Drost MR, van Bochove GS, van Oosterhout MF, Nicolay K, Strijkers GJ. DTI-based assessment of ischemia-reperfusion in mouse skeletal muscle. Magn Reson Med 2006; 56 (02) 272-281
- 38 Suami H, Scaglioni MF. Anatomy of the lymphatic system and the lymphosome concept with reference to lymphedema. Semin Plast Surg 2018; 32 (01) 5-11
- 39 Suami H. Anatomical theories of the pathophysiology of cancer-related lymphoedema. Cancers (Basel) 2020; 12 (05) 1338
- 40 Gustavsson A, Norton N, Fast T. et al. Global estimates on the number of persons across the Alzheimer's disease continuum. Alzheimers Dement 2023; 19 (02) 658-670
- 41 Saeedi M, Rashidy-Pour A. Association between chronic stress and Alzheimer's disease: therapeutic effects of Saffron. Biomed Pharmacother 2021; 133: 110995
- 42 Pase MP, Beiser AS, Himali JJ. et al. Assessment of plasma total tau level as a predictive biomarker for dementia and related endophenotypes. JAMA Neurol 2019; 76 (05) 598-606
- 43 Lee YJ, Lin SY, Peng SW. et al. Predictive utility of plasma amyloid and tau for cognitive decline in cognitively normal adults. J Prev Alzheimers Dis 2023; 10 (02) 178-185
- 44 Mielke MM, Hagen CE, Wennberg AMV. et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the Mayo Clinic Study on Aging. JAMA Neurol 2017; 74 (09) 1073-1080
- 45 Park JC, Han SH, Yi D. et al. Plasma tau/amyloid-β1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer's disease. Brain 2019; 142 (03) 771-786
- 46 Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 2019; 13: 363
- 47 Chen SD, Wu CL, Hwang WC, Yang DI. More insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. Int J Mol Sci 2017; 18 (03) 545
- 48 Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11 (01) 4
- 49 Piancatelli D, Aureli A, Sebastiani P. et al. Gene- and gender-related decrease in serum BDNF levels in Alzheimer's disease. Int J Mol Sci 2022; 23 (23) 14599
- 50 Liu Y, Zhang S, Li X. et al. Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep 2020; 40 (02) BSR20193629
- 51 Lopez-Rodriguez AB, Hennessy E, Murray CL. et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer's disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement 2021; 17 (10) 1735-1755
- 52 Wang RP, Huang J, Chan KWY. et al. IL-1β and TNF-α play an important role in modulating the risk of periodontitis and Alzheimer's disease. J Neuroinflammation 2023; 20 (01) 71
- 53 Park JC, Han SH, Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer's disease: a brief review. BMB Rep 2020; 53 (01) 10-19
- 54 Fard MT, Savage KM, Stough CK. Peripheral inflammation marker relationships to cognition in healthy older adults - a systematic review. Psychoneuroendocrinology 2022; 144: 105870
- 55 Walker KA, Le Page LM, Terrando N, Duggan MR, Heneka MT, Bettcher BM. The role of peripheral inflammatory insults in Alzheimer's disease: a review and research roadmap. Mol Neurodegener 2023; 18 (01) 37
- 56 King E, O'Brien JT, Donaghy P. et al. Peripheral inflammation in mild cognitive impairment with possible and probable Lewy body disease and Alzheimer's disease. Int Psychogeriatr 2019; 31 (04) 551-560
