Subscribe to RSS
DOI: 10.1055/a-2781-6794
Engineering the Lymphatic Vasculature: Current Concepts and Challenges from Preclinical Strategies to Clinical Practice
Authors
Abstract
Lymphedema is a chronic, debilitating condition characterized by impaired lymphatic drainage, tissue swelling, and fibrosis. Conventional treatments mainly focus on finding symptomatic solutions, rarely using tissue-engineered approaches of regenerative therapies. Tissue engineering approaches have emerged as promising strategies to restore lymphatic function by integrating molecular cues, cellular components, and biomaterial scaffolds. This review summarizes recent advances and challenges in lymphatic regeneration, focusing on (1) molecular regulation, including growth factors and chemical modulators; (2) cellular components with primary lymphatic endothelial cells (LECs), stem cells, fibroblasts, and macrophages; (3) biomaterials and engineering strategies, highlighting hydrogels, 3D scaffolds, and controlled delivery systems; and (4) preclinical and translational studies in different animal models. Finally, current and emerging strategies in clinical and plastic reconstructive surgery are discussed. Challenges such as cell survival, molecular specificity, and functional integration are highlighted, along with future directions for combinatorial approaches. This review provides a current framework for advancing tissue-engineered solutions and challenges for lymphedema and promoting translational success.
‡ These authors contributed equally to this article.
Publication History
Article published online:
21 January 2026
© 2026. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science 2020; 369 (6500) eaax4063
- 2 Hu Z, Zhao X, Wu Z. et al. Lymphatic vessel: Origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9 (01) 9
- 3 Hossain L, Gomes KP, Safarpour S, Gibson SB. The microenvironment of secondary lymphedema. The key to finding effective treatments?. Biochim Biophys Acta Mol Basis Dis 2025; 1871 (03) 167677
- 4 Lee S-O, Kim I-K. Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol 2024; 12: 1363811
- 5 Secker GA, Harvey NL. Regulation of VEGFR signalling in lymphatic vascular development and disease: An update. Int J Mol Sci 2021; 22 (14) 7760
- 6 Kuonqui K, Campbell A-C, Sarker A. et al. Dysregulation of lymphatic endothelial VEGFR3 signaling in disease. Cells 2023; 13 (01) 68
- 7 Secker GA, Harvey NL. VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels. Dev Dyn 2015; 244 (03) 323-331
- 8 Sweat RS, Sloas DC, Murfee WL. VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation 2014; 21 (06) 532-540
- 9 Anisimov A, Alitalo A, Korpisalo P. et al. Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ Res 2009; 104 (11) 1302-1312
- 10 Hong YK, Harvey N, Noh YH. et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225 (03) 351-357
- 11 Mohan G, Khan I, Neumann CR. et al. Topical tissue nanotransfection of Prox1 is effective in the prophylactic management of lymphedema. Mol Ther Nucleic Acids 2024; 35 (01) 102121
- 12 Choi I, Lee S, Kyoung Chung H. et al. 9-cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: therapeutic implications of 9-cis retinoic acid for secondary lymphedema. Circulation 2012; 125 (07) 872-882
- 13 Lian Z, Yu SR, Cui YX. et al. Rosuvastatin enhances lymphangiogenesis after myocardial infarction by regulating the miRNAs/vascular endothelial growth factor receptor 3 (miRNAs/VEGFR3) pathway. ACS Pharmacol Transl Sci 2024; 7 (02) 335-347
- 14 Sestito LF, To KHT, Cribb MT, Archer PA, Thomas SN, Dixon JB. Lymphatic-draining nanoparticles deliver Bay K8644 payload to lymphatic vessels and enhance their pumping function. Sci Adv 2023; 9 (08) eabq0435
- 15 Gulmark Hansen FC, Jørgensen MG, Sørensen JA. Treatment of breast cancer-related lymphedema with topical tacrolimus: A prospective, open-label, single-arm, phase II pilot trial. J Breast Cancer 2023; 26 (01) 46-59
- 16 Park HS, Jung IM, Choi GH, Hahn S, Yoo YS, Lee T. Modification of a rodent hindlimb model of secondary lymphedema: Surgical radicality versus radiotherapeutic ablation. BioMed Res Int 2013; 2013: 208912
- 17 Conrad C, Niess H, Huss R. et al. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation 2009; 119 (02) 281-289
- 18 Zhou H, Wang M, Hou C, Jin X, Wu X. Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn J Clin Oncol 2011; 41 (07) 841-846
- 19 Shimizu Y, Shibata R, Shintani S, Ishii M, Murohara T. Therapeutic lymphangiogenesis with implantation of adipose-derived regenerative cells. J Am Heart Assoc 2012; 1 (04) e000877
- 20 Yoshida S, Hamuy R, Hamada Y, Yoshimoto H, Hirano A, Akita S. Adipose-derived stem cell transplantation for therapeutic lymphangiogenesis in a mouse secondary lymphedema model. Regen Med 2015; 10 (05) 549-562
- 21 Ogino R, Hayashida K, Yamakawa S, Morita E. Adipose-derived stem cells promote intussusceptive lymphangiogenesis by restricting dermal fibrosis in irradiated tissue of mice. Int J Mol Sci 2020; 21 (11) 3885
- 22 Hwang JH, Kim IG, Lee JY. et al. Therapeutic lymphangiogenesis using stem cell and VEGF-C hydrogel. Biomaterials 2011; 32 (19) 4415-4423
- 23 Ackermann M, Wettstein R, Senaldi C. et al. Impact of platelet rich plasma and adipose stem cells on lymphangiogenesis in a murine tail lymphedema model. Microvasc Res 2015; 102: 78-85
- 24 Bucan A, Dhumale P, Jørgensen MG. et al. Comparison between stromal vascular fraction and adipose derived stem cells in a mouse lymphedema model. J Plast Surg Hand Surg 2020; 54 (05) 302-311
- 25 Mackert GA, Hsiao HY, Chang YC. et al. Transplantation of engineered vascularized lymphatic tissue using LEC and in vivo AV loop model to enhance lymphangiogenesis and restore lymphatic drainage in a lymphadenectomy rat model. J Tissue Eng 2025;16:20417314251360755
- 26 Gong H, Wang T, Sun X. et al. Fibroblasts facilitate lymphatic vessel formation in transplanted heart. Theranostics 2024; 14 (05) 1886-1908
- 27 Ran S, Montgomery KE. Macrophage-mediated lymphangiogenesis: The emerging role of macrophages as lymphatic endothelial progenitors. Cancers (Basel) 2012; 4 (03) 618-657
- 28 Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: An inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation 2016; 23 (02) 95-121
- 29 Fuchs B, Mert S, Hofmann D. et al. Bioactivated scaffolds promote angiogenesis and lymphangiogenesis for dermal regeneration in vivo. J Tissue Eng 2025;16:20417314251317542
- 30 Yang CY, Tinhofer IE, Nguyen D, Cheng MH. Enhancing lymphangiogenesis and lymphatic drainage to vascularized lymph nodes with nanofibrillar collagen scaffolds. J Surg Oncol 2022; 126 (07) 1169-1175
- 31 Campos JL, Pons G, Al-Sakkaf AM. et al. Lymphatic regeneration after popliteal lymph node excision and implantation of aligned nanofibrillar collagen scaffolds: An experimental rabbit model. J Funct Biomater 2024; 15 (08) 235
- 32 Güç E, Briquez PS, Foretay D. et al. Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials 2017; 131: 160-175
- 33 Fuchs B, Birt A, Moellhoff N, Kuhlmann C, Giunta R, Wiggenhauser PS. The use of commercial fibrin glue in dermal replacement material reduces angiogenic and lymphangiogenic gene and protein expression in vitro. J Biomater Appl 2023; 37 (10) 1858-1873
- 34 Hooks JST, Bernard FC, Cruz-Acuña R. et al. Synthetic hydrogels engineered to promote collecting lymphatic vessel sprouting. Biomaterials 2022; 284: 121483
- 35 Sung CJ, Gupta K, Wang J, Wong AK. Lymphatic tissue bioengineering for the treatment of postsurgical lymphedema. Bioengineering (Basel) 2022; 9 (04) 162
- 36 Campbell KT, Silva EA. Biomaterial based strategies for engineering new lymphatic vasculature. Adv Healthc Mater 2020; 9 (18) e2000895
- 37 Will PA, Taqatqeh F, Fricke F. et al. Tissue-engineered cellulose tubes for microvascular and lymphatic reconstruction: A translational and feasibility study. J Plast Reconstr Aesthet Surg 2024; 97: 200-211
- 38 Kang HJ, Moon SY, Kim B-K, Myung Y, Lee J-H, Jeong JH. Recellularized lymph node scaffolds with human adipose-derived stem cells enhance lymph node regeneration to improve lymphedema. Sci Rep 2023; 13 (01) 5397
- 39 Al-Ansari DE, Hu Y, Negrini NC, Jones D, Birdsey GM, Celiz AD. Three-dimensional modelling of lymphangiogenesis in-vitro using bioorthogonal click-crosslinked gelatin hydrogels. Mater Today Bio 2025; 35: 102367
- 40 Kim M, Choi S, Choi D-H. et al. An advanced 3D lymphatic system for assaying human cutaneous lymphangiogenesis in a microfluidic platform. NPG Asia Mater 2024; 16 (01) 7
- 41 Henderson AR, Ilan IS, Lee E. A bioengineered lymphatic vessel model for studying lymphatic endothelial cell-cell junction and barrier function. Microcirculation 2021; 28 (08) e12730
- 42 Lugo-Cintrón KM, Ayuso JM, White BR. et al. Matrix density drives 3D organotypic lymphatic vessel activation in a microfluidic model of the breast tumor microenvironment. Lab Chip 2020; 20 (09) 1586-1600
- 43 Bucan A, Frendø M, Ngo MT, Sørensen JA, Hölmich LR. Surgical lymphedema models in the mice hindlimb-A systematic review and quality assessment. Microsurgery 2024; 44 (01) e31088
- 44 Ahmed S, Mohan G, Konig DJ. et al. Murine hindlimb lymphedema model: optimization and evaluation of radiation. Breast Cancer Res 2025; 27 (01) 168
- 45 Xing C, Sun J, Liu Y. et al. A new secondary chronic lymphedema rat model improved by high-fat diet. Lymphat Res Biol 2025; 23 (03) 194-202
- 46 Morita Y, Sakata N, Kawakami R. et al. Establishment of a simple, reproducible, and long-lasting hind limb animal model of lymphedema. Plast Reconstr Surg Glob Open 2023; 11 (09) e5243
- 47 Nishikawa S. Effects of sulfonamide on the pituitary-thyroid gland. 2. Morphological changes of thyrotrophs in anterior pituitary gland. J Toxicol Sci 1983; 8 (01) 61-70
- 48 Hassanein AH, Sinha M, Neumann CR, Mohan G, Khan I, Sen CK. A murine tail lymphedema model. J Vis Exp 2021; (168) 10.3791/61848
- 49 Escobedo N, Proulx ST, Karaman S. et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight 2016; 1 (02) e85096
- 50 Ribatti D. Transgenic models to study angiogenesis and lymphangiogenesis: A historical note. Clin Anat 2025; (E-pub ahead of print)
- 51 Castejon R, Gamallo C, Jimenez-Cossio J. An experimental study of lymphatic vessel autotransplantation in the dog. Lymphology 1990; 23 (04) 194-197
- 52 Lähteenvuo M, Honkonen K, Tervala T. et al. Growth factor therapy and autologous lymph node transfer in lymphedema. Circulation 2011; 123 (06) 613-620
- 53 Tran L, Rodela H, Hay JB, Oreopoulos D, Johnston MG. Quantitation of lymphatic drainage of the peritoneal cavity in sheep: Comparison of direct cannulation techniques with indirect methods to estimate lymph flow. Perit Dial Int 1993; 13 (04) 270-279
- 54 Tobbia D, Semple J, Baker A, Dumont D, Semple A, Johnston M. Lymphedema development and lymphatic function following lymph node excision in sheep. J Vasc Res 2009; 46 (05) 426-434
- 55 Jila A, Kim H, Nguyen VP. et al. Lymphangiogenesis following obstruction of large postnodal lymphatics in sheep. Microvasc Res 2007; 73 (03) 214-223
- 56 Ito R, Suami H. Lymphatic territories (lymphosomes) in swine: An animal model for future lymphatic research. Plast Reconstr Surg 2015; 136 (02) 297-304
- 57 McFarlin DE, Binns RM. . (1973). Lymph node function and lymphocyte circulation in the pig. In: Janković BD, Isaković K. (eds). Microenvironmental Aspects of Immunity. Advances in Experimental Medicine and Biology. 1973. ; vol 29. Springer; Boston, MA:
- 58 Hadamitzky C, Zaitseva TS, Bazalova-Carter M. et al. Aligned nanofibrillar collagen scaffolds - Guiding lymphangiogenesis for treatment of acquired lymphedema. Biomaterials 2016; 102: 259-267
- 59 Lenti E, Bianchessi S, Proulx ST. et al. Therapeutic regeneration of lymphatic and immune cell functions upon lympho-organoid transplantation. Stem Cell Reports 2019; 12 (06) 1260-1268
- 60 Kang HJ, Lee J-H, Jin YX, Myung Y, Jeong JH. Therapeutic effects of 3D-bioprinted mesenchymal stem cell-based artificial lymph nodes on lymphedema. IJB 2025; 11: 457-474
- 61 Kim IG, Lee JY, Lee DS, Kwon JY, Hwang JH. Extracorporeal shock wave therapy combined with vascular endothelial growth factor-C hydrogel for lymphangiogenesis. J Vasc Res 2013; 50 (02) 124-133
- 62 Hsiao HY, Mackert GA, Chang YC, Liu JW, Chang FC, Huang JJ. In vivo vascularized scaffold with different shear-exposed models for lymphatic tissue regeneration. J Tissue Eng 2023;14:20417314231196212
- 63 Cè M, Menozzi A, Soresina M, Giardini D, Martinenghi C, Cellina M. Lymphedema surgical treatment using BioBridge™: A preliminary experience. Appl Sci (Basel) 2023; 13 (20) 11571
- 64 Deptula P, Zhou A, Posternak V, He H, Nguyen D. Multimodality approach to lymphedema surgery achieves and maintains normal limb volumes: A treatment algorithm to optimize outcomes. J Clin Med 2022; 11 (03) 598
- 65 Olszewski WL, Zaleska M. A novel method of edema fluid drainage in obstructive lymphedema of limbs by implantation of hydrophobic silicone tubes. J Vasc Surg Venous Lymphat Disord 2015; 3 (04) 401-408
- 66 Singh AP, Dhar A, Srivastava A, Kumar R, Pandey R. Comparing the efficacy of a combination of artificial lymphatics in the form of silicone tube and compressive therapy versus compressive therapy only in upper limb lymphedema following axillary lymph node dissection in breast cancer patients: A randomized controlled trial. Indian J Vasc Endovasc Surg 2019; 6 (04) 283-290
- 67 Pajula S, Saarikko A, Suominen S. et al. Lymfactin gene therapy with vascularized lymph node transfer reduces compression-free swelling and enhances quality of life in breast cancer-related lymphedema: Final Phase I trial results. J Plast Reconstr Aesthet Surg 2025; 111: 312-321
- 68 Maldonado GE, Pérez CA, Covarrubias EE. et al. Autologous stem cells for the treatment of post-mastectomy lymphedema: A pilot study. Cytotherapy 2011; 13 (10) 1249-1255
- 69 Toyserkani NM, Jensen CH, Sheikh SP, Sørensen JA. Cell-assisted lipotransfer using autologous adipose-derived stromal cells for alleviation of breast cancer-related lymphedema. Stem Cells Transl Med 2016; 5 (07) 857-859
- 70 Ismail AM, Abdou SM, Abdelnaby AY, Hamdy MA, El Saka AA, Gawaly A. Stem cell therapy using bone marrow-derived mononuclear cells in treatment of lower limb lymphedema: A randomized controlled clinical trial. Lymphat Res Biol 2018; 16 (03) 270-277
- 71 Ehyaeeghodraty V, Molavi B, Nikbakht M. et al. Effects of mobilized peripheral blood stem cells on treatment of primary lower extremity lymphedema. J Vasc Surg Venous Lymphat Disord 2020; 8 (03) 445-451
