RSS-Feed abonnieren
DOI: 10.1055/s-0028-1109670
© Georg Thieme Verlag KG Stuttgart · New York
In-Vivo Quantification of Wall Motion in Cerebral Aneurysms from 2D Cine Phase Contrast Magnetic Resonance Images
In-Vivo-Quantifizierung der Wandbewegung zerebraler Aneurysmen mittels 2D-Phasen-Kontrast-MagnetresonanztomografiePublikationsverlauf
received: 5.2.2009
accepted: 14.7.2009
Publikationsdatum:
26. Oktober 2009 (online)

Zusammenfassung
Ziel: Die quantitative Charakterisierung der Wandbewegung zerebraler Aneurysmen ist von großem Interesse, um ein besseres Verständnis der Ruptierung zu entwickeln, um genauere Computersimulationen durchführen zu können und um theoretische Modelle dieser vaskulären Erkrankungen zu validieren. Material und Methoden: Mittels Phasen-Kontrast-Magnetresonanztomografie (2D pcMRI) und quantitativer Magnetresonanztomografie (QMRA) wurde die lokale Wandbewegung in sieben zerebralen Aneurysmen in 2 (in einem Falle 3) Querschnittschichten, welche senkrecht zueinander orientiert wurden, gemessen. Ergebnisse: Werte für die maximale Wanddehnung reichten von 0,16 – 1,6 mm (Mittelwert 0,67 mm) und Werte für die maximale Wandkontraktion von –1,91 bis –0,34 mm (Mittelwert –0,94 mm). Im Durchschnitt betrug die Wandauslenkung 0,04 – 0,31 mm (Mittelwert 0,15 mm). Statistisch signifikante Korrelationen zwischen den Bluteinflusskurven und der Wandauslenkung wurde in 7 der 15 Querschnittsschichten gefunden und in 6 der 15 Querschnittsschichten bestand eine statistisch signifikante Korrelation zwischen der Bewegung des Massenzentrums der Wand und der Einflusskurven (p-value < 0,05). Schlussfolgerung: Mittels Phasen-Kontrast-Magnetresonanztomografie (2D pcMRI) und quantitativer Magnetresonanztomografie (QMRA) kann die Wandbewegung zerebraler Aneurysmen quantifiziert werden; jedoch ist die Anwendung dieser Methode begrenzt durch ihre limitierte räumliche Auflösung.
Abstract
Purpose: The quantification of wall motion in cerebral aneurysms is of interest for the assessment of aneurysmal rupture risk, for providing boundary conditions for computational simulations and as a validation tool for theoretical models. Materials and Methods: 2D cine phase contrast magnetic resonance imaging (2D pcMRI) in combination with quantitative magnetic resonance angiography (QMRA) was evaluated for measuring wall motion in 7 intracranial aneurysms. In each aneurysm, 2 (in one case 3) cross sections, oriented approximately perpendicular to each other, were measured. Results: The maximum aneurysmal wall distention ranged from 0.16 mm to 1.6 mm (mean 0.67 mm), the maximum aneurysmal wall contraction was –1.91 mm to –0.34 mm (mean 0.94 mm), and the average wall displacement ranged from 0.04 mm to 0.31 mm (mean 0.15 mm). Statistically significant correlations between average wall displacement and the shape of inflow curves (p-value < 0.05) were found in 7 of 15 cross sections; statistically significant correlations between the displacement of the luminal boundary center point and the shape of inflow curves (p-value < 0.05) were found in 6 of 15 cross sections. Conclusion: 2D pcMRI in combination with QMRA is capable of visualizing and quantifying wall motion in cerebral aneurysms. However, application of this technique is currently restricted by its limited spatial resolution.
Key words
brain - aneurysm - MR angiography
References
- 1
Black S P, Leo H L, Carson W L.
Recording and measuring the interior features of intracranial aneurysms removed at
autopsy: method and initial findings.
Neurosurgery.
1988;
22
40-44
MissingFormLabel
- 2
Ma B, Harbaugh R E, Raghavan M L.
Three-dimensional geometrical characterization of cerebral aneurysms.
Ann Biomed Eng.
2004;
32
264-273
MissingFormLabel
- 3
Ujiie H, Tachibana H, Hiramatsu O. et al .
Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms:
a possible index for surgical treatment of intracranial aneurysms.
Neurosurgery.
1999;
45
119-129, discussion 129 – 130
MissingFormLabel
- 4
Ujiie H, Tamano Y, Sasaki K. et al .
Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm?.
Neurosurgery.
2001;
48
495-502, discussion 502 – 493
MissingFormLabel
- 5
Karmonik C, Arat A, Benndorf G. et al .
A technique for improved quantitative characterization of intracranial aneurysms.
AJNR.
2004;
25
1158-1161
MissingFormLabel
- 6
Mantha A, Karmonik C, Benndorf G. et al .
Hemodynamics in a cerebral artery before and after the formation of an aneurysm.
AJNR.
2006;
27
1113-1118
MissingFormLabel
- 7
Acevedo-Bolton G, Jou L D, Dispensa B P. et al .
Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical
simulation with experimental validation: technical case report.
Neurosurgery.
2006;
59
E429-430, author reply E429 – E430
MissingFormLabel
- 8
Jou L D, Wong G, Dispensa B. et al .
Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial
aneurysms.
AJNR.
2005;
26
2357-2363
MissingFormLabel
- 9
Shojima M, Oshima M, Takagi K. et al .
Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid
dynamic study of 20 middle cerebral artery aneurysms.
Stroke, a journal of cerebral circulation.
2004;
35
2500-2505
MissingFormLabel
- 10
Castro M A, Putman C M, Cebral J R.
Patient-specific computational fluid dynamics modeling of anterior communicating artery
aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions
in the carotid arteries.
AJNR.
2006;
27
2061-2068
MissingFormLabel
- 11
Castro M A, Putman C M, Cebral J R.
Computational fluid dynamics modeling of intracranial aneurysms: effects of parent
artery segmentation on intra-aneurysmal hemodynamics.
AJNR.
2006;
27
1703-1709
MissingFormLabel
- 12
Castro M A, Putman C M, Cebral J R.
Patient-specific computational modeling of cerebral aneurysms with multiple avenues
of flow from 3D rotational angiography images.
Academic radiology.
2006;
13
811-821
MissingFormLabel
- 13
Cebral J R, Castro M A, Burgess J E. et al .
Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific
computational hemodynamics models.
AJNR.
2005;
26
2550-2559
MissingFormLabel
- 14
Cebral J R, Lohner R.
Efficient simulation of blood flow past complex endovascular devices using an adaptive
embedding technique.
IEEE transactions on medical imaging.
2005;
24
468-476
MissingFormLabel
- 15
Cebral J R, Pergolizzi R S, Putman C M.
Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison
with cerebral angiography.
Academic radiology.
2007;
14
804-813
MissingFormLabel
- 16
Karmonik Jr C, Klucznik R, Benndorf G.
Blutfluss in zerebralen Aneurysmen: Vergleich von Phasen-Kontrast-Magnetresonanztomografie
und Computational Fluid Dynamics – erste Erfahrungen.
Fortschr Röntgenstr.
2008;
180
209-215
MissingFormLabel
- 17
Meyer F B, Huston 3rd
J, Riederer S S.
Pulsatile increases in aneurysm size determined by cine phase-contrast MR angiography.
Journal of neurosurgery.
1993;
78
879-883
MissingFormLabel
- 18
Ishida F, Ogawa H, Simizu T. et al .
Visualizing the dynamics of cerebral aneurysms with four-dimensional computed tomographic
angiography.
Neurosurgery.
2005;
57
460-471, discussion 460 – 471
MissingFormLabel
- 19
Toth M, Nadasy G L, Nyary I. et al .
Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms.
Journal of Vascular Research.
1998;
35
345-355
MissingFormLabel
- 20
Steiger H J, Aaslid R, Keller S. et al .
Strength, elasticity and viscoelastic properties of cerebral aneurysms.
Heart and vessels.
1989;
5
41-46
MissingFormLabel
- 21
Humphrey J D, Canham P B.
Structure, mechanical properties, and mechanics of intracranial saccular aneurysms.
Journal of Elasticity.
2000;
61
49-81
MissingFormLabel
- 22
Challa V, Han H C.
Spatial variations in wall thickness, material stiffness and initial shape affect
wall stress and shape of intracranial aneurysms.
Neurological research.
2007;
29
569-577
MissingFormLabel
- 23
Hademenos G J, Massoud T, Valentino D J. et al .
A nonlinear mathematical model for the development and rupture of intracranial saccular
aneurysms.
Neurological research.
1994;
16
376-384
MissingFormLabel
- 24
Baek S, Rajagopal K R, Humphrey J D.
A theoretical model of enlarging intracranial fusiform aneurysms.
Journal of biomechanical engineering.
2006;
128
142-149
MissingFormLabel
- 25
David G, Humphrey J D.
Further evidence for the dynamic stability of intracranial saccular aneurysms.
Journal of biomechanics.
2003;
36
1143-1150
MissingFormLabel
- 26
Haslach H W.
A nonlinear dynamical mechanism for bruit generation by an intracranial saccular aneurysm.
Journal of mathematical biology.
2002;
45
441-460
MissingFormLabel
- 27
Humphrey J D, Kyriacou S K.
The use of Laplace’s equation in aneurysm mechanics.
Neurological research.
1996;
18
204-208
MissingFormLabel
- 28
Kyriacou S K, Humphrey J D.
Influence of size, shape and properties on the mechanics of axisymmetric saccular
aneurysms.
Journal of biomechanics.
1996;
29
1015-1022
MissingFormLabel
- 29
Ryan J M, Humphrey J D.
Finite element based predictions of preferred material symmetries in saccular aneurysms.
Ann Biomed Eng.
1999;
27
641-647
MissingFormLabel
- 30
Seshaiyer Jr P, Humphrey J D.
On the potentially protective role of contact constraints on saccular aneurysms.
Journal of biomechanics.
2001;
34
607-612
MissingFormLabel
- 31
Shah A D, Humphrey J D.
Finite strain elastodynamics of intracranial saccular aneurysms.
Journal of biomechanics.
1999;
32
593-599
MissingFormLabel
- 32
Haacke E M, Li D, Kaushikkar S.
Cardiac MR imaging: principles and techniques.
Top Magn Reson Imaging.
1995;
7
200-217
MissingFormLabel
- 33
Draney M T, Arko F R, Alley M T. et al .
Quantification of vessel wall motion and cyclic strain using cine phase contrast MRI:
in vivo validation in the porcine aorta.
Magn Reson Med.
2004;
52
286-295
MissingFormLabel
- 34
Wedding K L, Draney M T, Herfkens R J. et al .
Measurement of vessel wall strain using cine phase contrast MRI.
J Magn Reson Imaging.
2002;
15
418-428
MissingFormLabel
- 35
Yoshii S, Mohri N, Kamiya K. et al .
Cine magnetic resonance imaging study of blood flow and wall motion of the aortic
arch.
Japanese circulation journal.
1996;
60
553-559
MissingFormLabel
- 36
Matsumoto Y, Honda T, Hamada M. et al .
Evaluation of aortic distensibility in patients with coronary artery disease by use
of cine magnetic resonance.
Angiology.
1996;
47
149-155
MissingFormLabel
- 37
Zhao S, Croisille P, Janier M. et al .
Comparison between qualitative and quantitative wall motion analyses using dipyridamole
stress breath-hold cine magnetic resonance imaging in patients with severe coronary
artery stenosis.
Magnetic resonance imaging.
1997;
15
891-898
MissingFormLabel
- 38
Faries P L, Agarwal G, Lookstein R. et al .
Use of cine magnetic resonance angiography in quantifying aneurysm pulsatility associated
with endoleak.
J Vasc Surg.
2003;
38
652-656
MissingFormLabel
- 39
Vos A W, Wisselink W, Marcus J T. et al .
Aortic aneurysm pulsatile wall motion imaged by cine MRI: a tool to evaluate efficacy
of endovascular aneurysm repair?.
Eur J Vasc Endovasc Surg.
2002;
23
158-161
MissingFormLabel
- 40
Vos A W, Wisselink W, Marcus J T. et al .
Cine MRI assessment of aortic aneurysm dynamics before and after endovascular repair.
J Endovasc Ther.
2003;
10
433-439
MissingFormLabel
- 41
Zhao M, Charbel F T, Alperin N. et al .
Improved phase-contrast flow quantification by three-dimensional vessel localization.
Magnetic resonance imaging.
2000;
18
697-706
MissingFormLabel
- 42
Abramoff M D.
Image Processing with ImageJ.
Biophotonics International.
2004;
11
36-42
MissingFormLabel
- 43
Scott R, Atkins F, Harper P V.
Median Window Filter as a Smoothing-Edge Preserving Technique.
Journal of Nuclear Medicine.
1978;
19
749
MissingFormLabel
- 44
Zhao M, Amin-Hanjani S, Ruland S. et al .
Regional cerebral blood flow using quantitative MR angiography.
AJNR.
2007;
28
1470-1473
MissingFormLabel
- 45
Monninghoff C, Maderwald S, Theysohn J M. et al .
Beurteilung von intrakraniellen Hirnarterienaneurysmen mit 7 Tesla versus 1,5-Tesla-Time-of-Flight-MR-Angiografie
– erste Erfahrungen.
Fortschr Röntgenstr.
2009;
181
16-23
MissingFormLabel
- 46
Hähnel S, Stippich C, Hartmann M. et al .
Kraniale und zervikale arterielle Gefäßverletzungen: Bildgebung und Therapie.
Fortschr Röntgenstr.
2007;
179
119-129
MissingFormLabel
- 47
Zhu W, Feng D, Qi J. et al .
Evaluation of large intracranial aneurysms with cine MRA and 3D contrast-enhanced
MRA.
J Huazhong Univ Sci Technolog Med Sci.
2004;
24
95-98, 106
MissingFormLabel
- 48
MacDonald D J, Finlay H M, Canham P B.
Directional wall strength in saccular brain aneurysms from polarized light microscopy.
Ann Biomed Eng.
2000;
28
533-542
MissingFormLabel
- 49
San Millan Ruiz D, Yilmaz H, Dehdashti A R. et al .
The perianeurysmal environment: influence on saccular aneurysm shape and rupture.
AJNR.
2006;
27
504-512
MissingFormLabel
- 50
Dietrich U, Wanke I, Wittenberg G.
Rupturiertes Aneurysma bei Fenestration der distalen A. basilaris.
Fortschr Röntgenstr.
2008;
180
255-257
MissingFormLabel
- 51
Moftakhar R, Aagaard-Kienitz B, Johnson K. et al .
Noninvasive measurement of intra-aneurysmal pressure and flow pattern using phase
contrast with vastly undersampled isotropic projection imaging.
AJNR.
2007;
28
1710-1714
MissingFormLabel
- 52
Meckel S, Stalder A F, Santini F. et al .
In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with
flow-sensitized 4-D MR imaging at 3T.
Neuroradiology.
2008;
50(6)
473-484
MissingFormLabel
- 53
Frydrychowicz A, Markl M, Harloff A. et al .
Die Analyse aortaler Hamodynamik und Gefasswandparameter mittels fluss-sensitiver
in-vivo 4D-MRT bei 3 Tesla.
Fortschr Röntgenstr.
2007;
179
463-472
MissingFormLabel
Dr. Christof Karmonik
Radiology, The Methodist Hospital Research Institute
6565 Fannin MB 1 – 002
77030 Houston
Telefon: ++ 1/7 13/4 41 15 83
Fax: ++ 1/7 13/7 90 64 74
eMail: ckarmonik@tmhs.org