Semin Reprod Med 2009; 27(3): 218-228
DOI: 10.1055/s-0029-1216275
© Thieme Medical Publishers

Estrogens, Brain, and Behavior: Lessons from Knockout Mouse Models

Rachel A. Hill1 , Wah Chin Boon2
  • 1Behavioral Neuroscience Laboratory, Mental Health Institute of Victoria, Parkville, Australia
  • 2Steroid Neurobiology Group, Howard Florey Institute, Parkville, Australia
Further Information

Publication History

Publication Date:
28 April 2009 (online)

ABSTRACT

The use of animal models to effectively replicate problems such as hormone deficiencies, neurologic diseases, and brain injury and stroke has certainly made a vast contribution to understanding the neuroprotective effects of estrogen in the brain. Studies using gonadectomy procedures followed by 17β-estradiol replacement have effectively demonstrated the positive effects that estrogen provides in cognitive performance and memory performance tasks. A major problem with such studies is that local brain aromatase (the estrogen-synthesizing enzyme) may still convert locally produced androgens to estrogens. Hence, such “estrogen-deficient” models may not be completely void of estrogen. The generation of the aromatase knockout (ArKO) and estrogen receptor knockout (ERKO) mouse models has enabled researchers to characterize the effects of complete estrogen deficiency within the brain and hence behavior. This review aims to compare and contrast the results of these various mouse models.

REFERENCES

  • 1 Azcoitia I, Sierra A, Veiga S, Honda S, Harada N, Garcia-Segura L M. Brain aromatase is neuroprotective.  J Neurobiol. 2001;  47 318-329
  • 2 Wise P M, Dubal D B, Wilson M E, Rau S W, Bottner M. Minireview: neuroprotective effects of estrogen-new insights into mechanisms of action.  Endocrinology. 2001;  142 969-973
  • 3 Tang M X, Jacobs D, Stern Y et al.. Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease.  Lancet. 1996;  348 429-432
  • 4 Cyr M, Calon F, Morissette M, Di Paolo T. Estrogenic modulation of brain activity: implications for schizophrenia and Parkinson's disease.  J Psychiatry Neurosci. 2002;  27 12-27
  • 5 Amantea D, Russo R, Bagetta G, Corasaniti M T. From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens.  Pharmacol Res. 2005;  52 119-132
  • 6 Wise P M, Dubal D B, Wilson M E, Rau S W, Bottner M, Rosewell K L. Estradiol is a protective factor in the adult and aging brain: understanding of mechanisms derived from in vivo and in vitro studies.  Brain Res Brain Res Rev. 2001;  37 313-319
  • 7 Tsang K L, Ho S L, Lo S K. Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations.  Neurology. 2000;  54 2292-2298
  • 8 Blanchet P J, Fang J, Hyland K, Arnold L A, Mouradian M M, Chase T N. Short-term effects of high-dose 17beta-estradiol in postmenopausal PD patients: a cross over study.  Neurology. 1999;  53 91-95
  • 9 Strijks E, Kremer J A, Horstink M W. Effects of female sex steroids on Parkinson's disease in postmenopausal women.  Clin Neuropharmacol. 1999;  22 93-97
  • 10 Henderson V W. Estrogen-containing hormone therapy and Alzheimer's disease risk: understanding discrepant inferences from observational and experimental research.  Neuroscience. 2006;  138 1031-1039
  • 11 Henderson V W, Watt L, Buckwalter J G. Cognitive skills associated with estrogen replacement in women with Alzheimer's disease.  Psychoneuroendocrinology. 1996;  21 421-430
  • 12 Doraiswamy P M, Bieber F, Kaiser L, Krishnan K R, Reuning-Scherer J, Gulanski B. The Alzheimer's Disease Assessment Scale: patterns and predictors of baseline cognitive performance in multicenter Alzheimer's disease trials.  Neurology. 1997;  48 1511-1517
  • 13 Duenas M, Torres-Aleman I, Naftolin F, Garcia-Segura L M. Interaction of insulin-like growth factor-I and estradiol signaling pathways on hypothalamic neuronal differentiation.  Neuroscience. 1996;  74 531-539
  • 14 Arimatsu Y, Hatanaka H. Estrogen treatment enhances survival of cultured fetal rat amygdala neurons in a defined medium.  Brain Res. 1986;  391 151-159
  • 15 Brinton R D, Tran J, Proffitt P, Montoya M. 17beta-estradiol enhances the outgrowth and survival of neocortical neurons in culture.  Neurochem Res. 1997;  22 1339-1351
  • 16 Wang L, Andersson S, Gustafsson J A. Estrogen receptor (ER)beta knockout mice reveal a role for ERbeta in migration of cortical neurons in the developing brain.  Proc Natl Acad Sci U S A. 2003;  100 703-708
  • 17 Sudo S, Wen T C, Desaki J. Beta-estradiol protects hippocampal CA1 neurons against transient forebrain ischemia in gerbil.  Neurosci Res. 1997;  29 345-354
  • 18 Audesirk T, Cabell L, Kern M, Audesirk G. Enhancement of dendritic branching in cultured hippocampal neurons by 17beta-estradiol is mediated by nitric oxide.  Int J Dev Neurosci. 2003;  21 225-233
  • 19 Huang Y, Huang Y L, Zhang S, Zhu Y C, Yao T. Estradiol acutely attenuates glutamate-induced calcium overload in primarily cultured rat hippocampal neurons through a membrane receptor-dependent mechanism.  Brain Res. 2004;  1026 254-260
  • 20 Sawada H, Ibi M, Kihara T, Urushitani M, Akaike A, Shimohama S. Estradiol protects mesencephalic dopaminergic neurons from oxidative stress-induced neuronal death.  J Neurosci Res. 1998;  54 707-719
  • 21 Singer C A, Rogers K L, Strickland T M, Dorsa D M. Estrogen protects primary cortical neurons from glutamate toxicity.  Neurosci Lett. 1996;  212 13-16
  • 22 Sribnick E A, Ray S K, Nowak M W, Li L, Banik N L. 17beta-estradiol attenuates glutamate-induced apoptosis and preserves electrophysiologic function in primary cortical neurons.  J Neurosci Res. 2004;  76 688-696
  • 23 Zaulyanov L L, Green P S, Simpkins J W. Glutamate receptor requirement for neuronal death from anoxia-reoxygenation: an in vitro model for assessment of the neuroprotective effects of estrogens.  Cell Mol Neurobiol. 1999;  19 705-718
  • 24 Regan R F, Guo Y. Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures.  Brain Res. 1997;  764 133-140
  • 25 Weaver Jr C E, Marek P, Park-Chung M, Tam S W, Farb D H. Neuroprotective activity of a new class of steroidal inhibitors of the N-methyl-D-aspartate receptor.  Proc Natl Acad Sci U S A. 1997;  94 10450-10454
  • 26 Brooke S, Chan R, Howard S, Sapolsky R. Endocrine modulation of the neurotoxcity of gp120: implications for AIDS-related dementia complex.  Proc Natl Acad Sci U S A. 1997;  94 9457-9462
  • 27 Howard S A, Brooke S M, Sapolsky R M. Mechanisms of estrogenic protection against gp120-induced neurotoxicity.  Exp Neurol. 2001;  168 385-391
  • 28 Bonnefont A B, Munoz F J, Inestrosa N C. Estrogen protects neuronal cells from the cytotoxicity induced by acetylcholinesterase-amyloid complexes.  FEBS Lett. 1998;  441 220-224
  • 29 Goodman Y, Bruce A J, Cheng B, Mattson M P. Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons.  J Neurochem. 1996;  66 1836-1844
  • 30 Hosoda T, Nakajima H, Honjo H. Estrogen protects neuronal cells from amyloid beta-induced apoptotic cell death.  Neuroreport. 2001;  12 1965-1970
  • 31 Marin R, Guerra B, Hernandez-Jimenez J G et al.. Estradiol prevents amyloid-beta peptide-induced cell death in a cholinergic cell line via modulation of a classical estrogen receptor.  Neuroscience. 2003;  121 917-926
  • 32 Moosmann B, Behl C. The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties.  Proc Natl Acad Sci U S A. 1999;  96 8867-8872
  • 33 Zhang Y, Champagne N, Beitel L K, Goodyer C G, Trifiro M, LeBlanc A. Estrogen and androgen protection of human neurons against intracellular amyloid beta1–42 toxicity through heat shock protein 70.  J Neurosci. 2004;  24 5315-5321
  • 34 Gelinas S, Martinoli M G. Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells.  J Neurosci Res. 2002;  70 90-96
  • 35 Merchenthaler I, Dellovade T L, Shughrue P J. Neuroprotection by estrogen in animal models of global and focal ischemia.  Ann N Y Acad Sci. 2003;  1007 89-100
  • 36 McCullough L D, Blizzard K, Simpson E R, Oz O K, Hurn P D. Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection.  J Neurosci. 2003;  23 8701-8705
  • 37 Suzuki S, Gerhold L M, Bottner M et al.. Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta.  J Comp Neurol. 2007;  500 1064-1075
  • 38 Dubal D B, Rau S W, Shughrue P J et al.. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death.  Endocrinology. 2006;  147 3076-3084
  • 39 Alkayed N J, Goto S, Sugo N et al.. Estrogen and Bcl-2: gene induction and effect of transgene in experimental stroke.  J Neurosci. 2001;  21 7543-7550
  • 40 Park E M, Cho S, Frys K A et al.. Inducible nitric oxide synthase contributes to gender differences in ischemic brain injury.  J Cereb Blood Flow Metab. 2006;  26 392-401
  • 41 Picazo O, Azcoitia I, Garcia-Segura L M. Neuroprotective and neurotoxic effects of estrogens.  Brain Res. 2003;  990 20-27
  • 42 Wilson M E, Dubal D B, Wise P M. Estradiol protects against injury-induced cell death in cortical explant cultures: a role for estrogen receptors.  Brain Res. 2000;  873 235-242
  • 43 Hill R A, Pompolo S, Jones M EE, Simpson E R, Boon W C. Estrogen deficiency leads to apoptosis in dopaminergic neurons in the medial pre-optic area and arcuate nucleus of male mice.  Mol Cell Neurosci. 2004;  27 466-476
  • 44 Hill R A, Chow J DY, Hillisch A, Jones M EE, Simpson E R, Boon W C. Fas/FasL mediated apoptosis in the arcuate nucleus and medial preoptic area of male ArKO mice is ameliorated by selective estrogen receptor alpha and beta agonist treatment respectively.  Mol Cell Neurosci. 2007;  36 146-157
  • 45 Mitra S W, Hoskin E, Yudkovitz J et al.. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha.  Endocrinology. 2003;  144 2055-2067
  • 46 Morale M C, L'Episcopo F, Tirolo C et al.. Loss of aromatase cytochrome P450 function as a risk factor for Parkinson's disease?.  Brain Res Rev. 2008;  57 431-443
  • 47 Levin-Allerhand J A, Lominska C E, Wang J, Smith J D. 17alpha-estradiol and 17beta-estradiol treatments are effective in lowering cerebral amyloid-beta levels in AbetaPPSWE transgenic mice.  J Alzheimers Dis. 2002;  4 449-457
  • 48 Tang Y P, Haslam S Z, Conrad S E, Sisk C L. Estrogen increases brain expression of the mRNA encoding transthyretin, an amyloid beta scavenger protein.  J Alzheimers Dis. 2004;  6 413-420 discussion 443-449
  • 49 Green P S, Bales K, Paul S, Bu G. Estrogen therapy fails to alter amyloid deposition in the PDAPP model of Alzheimer's disease.  Endocrinology. 2005;  146 2774-2781
  • 50 van Groen T, Kadish I. Transgenic AD model mice, effects of potential anti-AD treatments on inflammation and pathology.  Brain Res Brain Res Rev. 2005;  48 370-378
  • 51 Yue X, Lu M, Lancaster T et al.. Brain estrogen deficiency accelerates A{beta} plaque formation in an Alzheimer's disease animal model.  Proc Natl Acad Sci U S A. 2005;  102 19198-19203
  • 52 Wang J M, Irwin R W, Brinton R D. Activation of estrogen receptor alpha increases and estrogen receptor beta decreases apolipoprotein E expression in hippocampus in vitro and in vivo.  Proc Natl Acad Sci U S A. 2006;  103 16983-16988
  • 53 Ardelt A A, McCullough L D, Korach K S, Wang M M, Munzenmaier D H, Hurn P D. Estradiol regulates angiopoietin-1 mRNA expression through estrogen receptor-alpha in a rodent experimental stroke model.  Stroke. 2005;  36 337-341
  • 54 Dubal D B, Zhu H, Yu J et al.. Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury.  Proc Natl Acad Sci U S A. 2001;  98 1952-1957
  • 55 Wang L, Andersson S, Warner M, Gustafsson J A. Morphological abnormalities in the brains of estrogen receptor beta knockout mice.  Proc Natl Acad Sci U S A. 2001;  98 2792-2796
  • 56 Singh M, Setalo Jr G, Guan X, Frail D E, Toran-Allerand C D. Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice.  J Neurosci. 2000;  20 1694-1700
  • 57 Toran-Allerand C D, Guan X, MacLusky N J et al.. ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury.  J Neurosci. 2002;  22 8391-8401
  • 58 Shughrue P J, Lane M V, Merchenthaler I. Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system.  J Comp Neurol. 1997;  388 507-525
  • 59 Luine V N. Sex steroids and cognitive function.  J Neuroendocrinol. 2008;  20 866-872
  • 60 Martin S, Jones M, Simpson E, van den Buuse M. Impaired spatial reference memory in aromatase-deficient (ArKO) mice.  Neuroreport. 2003;  14 1979-1982
  • 61 Day M, Sung A, Logue S, Bowlby M, Arias R. Beta estrogen receptor knockout (BERKO) mice present attenuated hippocampal CA1 long-term potentiation and related memory deficits in contextual fear conditioning.  Behav Brain Res. 2005;  164 128-131
  • 62 Fugger H N, Cunningham S G, Rissman E F, Foster T C. Sex differences in the activational effect of ERalpha on spatial learning.  Horm Behav. 1998;  34 163-170
  • 63 Boon W C, Diepstraten J, van der Burg J, Jones M E, Simpson E R, van den Buuse M. Hippocampal NMDA receptor subunit expression and watermaze learning in estrogen deficient female mice.  Brain Res Mol Brain Res. 2005;  140 127-132
  • 64 Acosta-Martinez M, Horton T, Levine J E. Estrogen receptors in neuropeptide Y neurons: at the crossroads of feeding and reproduction.  Trends Endocrinol Metab. 2007;  18 48-50
  • 65 Geary N, Asarian L, Korach K S, Pfaff D W, Ogawa S. Deficits in E2-dependent control of feeding, weight gain, and cholecystokinin satiation in ER-alpha null mice.  Endocrinology. 2001;  142 4751-4757
  • 66 Jones M E, Thorburn A W, Britt K L et al.. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity.  Proc Natl Acad Sci U S A. 2000;  97 12735-12740
  • 67 Toda K, Saibara T, Okada T, Onishi S, Shizuta Y. A loss of aggressive behaviour and its reinstatement by oestrogen in mice lacking the aromatase gene (Cyp19).  J Endocrinol. 2001;  168 217-220
  • 68 Ogawa S, Lubahn D B, Korach K S, Pfaff D W. Behavioral effects of estrogen receptor gene disruption in male mice.  Proc Natl Acad Sci U S A. 1997;  94 1476-1481
  • 69 Ogawa S, Washburn T F, Taylor J, Lubahn D B, Korach K S, Pfaff D W. Modifications of testosterone-dependent behaviors by estrogen receptor-alpha gene disruption in male mice.  Endocrinology. 1998;  139 5058-5069
  • 70 Nomura M, Andersson S, Korach K S et al.. Estrogen receptor-beta gene disruption potentiates estrogen-inducible aggression but not sexual behaviour in male mice.  Eur J Neurosci. 2006;  23 1860-1868
  • 71 Krezel W, Dupont S, Krust A, Chambon P, Chapman P F. Increased anxiety and synaptic plasticity in estrogen receptor beta-deficient mice.  Proc Natl Acad Sci U S A. 2001;  98 12278-12282
  • 72 Imwalle D B, Gustafsson J A, Rissman E F. Lack of functional estrogen receptor beta influences anxiety behavior and serotonin content in female mice.  Physiol Behav. 2005;  84 157-163
  • 73 Lund T D, Rovis T, Chung W C, Handa R J. Novel actions of estrogen receptor-beta on anxiety-related behaviors.  Endocrinology. 2005;  146 797-807
  • 74 Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology.  Eur J Neurosci. 2004;  20 217-228
  • 75 Alves S E, McEwen B S, Hayashi S, Korach K S, Pfaff D W, Ogawa S. Estrogen-regulated progestin receptors are found in the midbrain raphe but not hippocampus of estrogen receptor alpha (ER alpha) gene-disrupted mice.  J Comp Neurol. 2000;  427 185-195
  • 76 Gundlah C, Alves S E, Clark J A, Pai L Y, Schaeffer J M, Rohrer S P. Estrogen receptor-beta regulates tryptophan hydroxylase-1 expression in the murine midbrain raphe.  Biol Psychiatry. 2005;  57 938-942
  • 77 Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J. Male aromatase-knockout mice exhibit normal levels of activity, anxiety and “depressive-like” symptomatology.  Behav Brain Res. 2005;  163 186-193
  • 78 Gorman J M. Gender differences in depression and response to psychotropic medication.  Gend Med. 2006;  3 93-109
  • 79 Walf A A, Frye C A. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior.  Neuropsychopharmacology. 2006;  31 1097-1111
  • 80 Rocha B A, Fleischer R, Schaeffer J M, Rohrer S P, Hickey G J. 17alpha-estradiol-induced antidepressant-like effect in the forced swim test is absent in estrogen receptor-alpha knockout (BERKO) mice.  Psychopharmacology (Berl). 2005;  179 637-643
  • 81 Braff D L, Geyer M A. Sensorimotor gating and schizophrenia. Human and animal model studies.  Arch Gen Psychiatry. 1990;  47 181-188
  • 82 Braff D L, Geyer M A, Swerdlow N R. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies.  Psychopharmacology (Berl). 2001;  156 234-258
  • 83 Castellanos F X, Fine E J, Kaysen D, Marsh W L, Rapoport J L, Hallett M. Sensorimotor gating in boys with Tourette's syndrome and ADHD: preliminary results.  Biol Psychiatry. 1998;  39 33-41
  • 84 Hoenig K, Hochrein A, Quednow B B, Maier W, Wagner M. Impaired prepulse inhibition of acoustic startle in obsessive-compulsive disorder.  Biol Psychiatry. 2005;  57 1153-1158
  • 85 Perry W, Minassian A, Lopez B, Maron L, Lincoln A. Sensorimotor gating deficits in adults with autism.  Biol Psychiatry. 2007;  61 482-486
  • 86 Swerdlow N R, Auerbach P, Monroe S M, Hartston H, Geyer M A, Braff D L. Men are more inhibited than women by weak prepulses.  Biol Psychiatry. 1993;  34 253-260
  • 87 van den Buuse M, Simpson E R, Jones M E. Prepulse inhibition of acoustic startle in aromatase knock-out mice: effects of age and gender.  Genes Brain Behav. 2003;  2 93-102
  • 88 Fahrbach S E, Meisel R L, Pfaff D W. Preoptic implants of estradiol increase wheel running but not the open field activity of female rats.  Physiol Behav. 1985;  35 985-992
  • 89 King J M. Effects of lesions of the amygdala, preoptic area, and hypothalamus on estradiol-induced activity in the female rat.  J Comp Physiol Psychol. 1979;  93 360-367
  • 90 Morgan M A, Pfaff D W. Effects of estrogen on activity and fear-related behaviors in mice.  Horm Behav. 2001;  40 472-482
  • 91 Ogawa S, Chan J, Gustafsson J A, Korach K S, Pfaff D W. Estrogen increases locomotor activity in mice through estrogen receptor alpha: specificity for the type of activity.  Endocrinology. 2003;  144 230-239
  • 92 Hill R A, McInnes K J, Gong E C, Jones M E, Simpson E R, Boon W C. Estrogen deficient male mice develop compulsive behavior.  Biol Psychiatry. 2007;  61 359-366
  • 93 Ferris C F, Rasmussen M F, Messenger T, Koppel G. Vasopressin-dependent flank marking in golden hamsters is suppressed by drugs used in the treatment of obsessive-compulsive disorder.  BMC Neurosci. 2001;  2 10
  • 94 Greer J M, Capecchi M R. Hoxb8 is required for normal grooming behavior in mice.  Neuron. 2002;  33 23-34
  • 95 Nordstrom E J, Burton F H. A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry.  Mol Psychiatry. 2002;  7 617-625
  • 96 Rapoport J L. Animal models of obsessive compulsive disorder.  Clin Neuropharmacol. 1992;  15(Suppl 1) 261A-262A
  • 97 Kruk M R, Westphal K G, Van Erp A M et al.. The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression.  Neurosci Biobehav Rev. 1998;  23 163-177
  • 98 Lumley L A, Robison C L, Chen W K, Mark B, Meyerhoff J L. Vasopressin into the preoptic area increases grooming behavior in mice.  Physiol Behav. 2001;  73 451-455
  • 99 Rissman E F, Wersinger S R, Fugger H N, Foster T C. Sex with knockout models: behavioral studies of estrogen receptor alpha.  Brain Res. 1999;  835 80-90
  • 100 Ogawa S, Chan J, Chester A E, Gustafsson J A, Korach K S, Pfaff D W. Survival of reproductive behaviors in estrogen receptor beta gene-deficient (betaERKO) male and female mice.  Proc Natl Acad Sci U S A. 1999;  96 12887-12892
  • 101 Ogawa S, Chester A E, Hewitt S C et al.. Abolition of male sexual behaviors in mice lacking estrogen receptors alpha and beta (alpha beta ERKO).  Proc Natl Acad Sci U S A. 2000;  97 14737-14741
  • 102 Robertson K M, Simpson E R, Lacham-Kaplan O, Jones M E. Characterization of the fertility of male aromatase knockout mice.  J Androl. 2001;  22 825-830
  • 103 Kudwa A E, Bodo C, Gustafsson J A, Rissman E F. A previously uncharacterized role for estrogen receptor beta: defeminization of male brain and behavior.  Proc Natl Acad Sci U S A. 2005;  102 4608-4612
  • 104 Ogawa S, Gordan J D, Taylor J, Lubahn D, Korach K, Pfaff D W. Reproductive functions illustrating direct and indirect effects of genes on behavior.  Horm Behav. 1996;  30 487-494
  • 105 Rissman E F, Early A H, Taylor J A, Korach K S, Lubahn D B. Estrogen receptors are essential for female sexual receptivity.  Endocrinology. 1997;  138 507-510
  • 106 Kudwa A E, Rissman E F. Double oestrogen receptor alpha and beta knockout mice reveal differences in neural oestrogen-mediated progestin receptor induction and female sexual behaviour.  J Neuroendocrinol. 2003;  15 978-983
  • 107 Bakker J, Honda S I, Harada N, Balthazart J. The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood.  J Neurosci. 2002;  22 9104-9112
  • 108 Kudwa A E, Boon W C, Simpson E R, Handa R J, Rissman E F. Dietary phytoestrogens dampen female sexual behavior in mice with a disrupted aromatase enzyme gene.  Behav Neurosci. 2007;  121 356-361
  • 109 Patisaul H B. Phytoestrogen action in the adult and developing brain.  J Neuroendocrinol. 2005;  17 57-64
  • 110 Breithofer A, Graumann K, Scicchitano M S, Karathanasis S K, Butt T R, Jungbauer A. Regulation of human estrogen receptor by phytoestrogens in yeast and human cells.  J Steroid Biochem Mol Biol. 1998;  67 421-429
  • 111 Kuiper G G, Lemmen J G, Carlsson B et al.. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.  Endocrinology. 1998;  139 4252-4263
  • 112 Freedman R R, Roehrs T A. Sleep disturbance in menopause.  Menopause. 2007;  14 826-829
  • 113 Vyazovskiy V V, Kopp C, Wigger E, Jones M E, Simpson E R, Tobler I. Sleep and rest regulation in young and old oestrogen deficient female mice.  J Neuroendocrinol. 2006;  18 567-576

Wah Chin BoonPh.D. 

Howard Florey Institute, University of Melbourne

Parkville, Victoria 3010, Australia

Email: wah.chin.boon@florey.edu.au

    >