Subscribe to RSS
DOI: 10.1055/s-0029-1217955
Partial Bromination and Fluoroalkylation of 5,10,15-Tris(pentafluorophenyl)corrole
Publication History
Publication Date:
04 September 2009 (online)
Abstract
Partial bromination of the free base of 5,10,15-tris(pentafluorophenyl)corrole was carried out, and various mono-, di-, tri- or tetrabrominated corroles could be selectively produced by controlling the amounts of NBS used. Their consequent Suzuki cross-coupling reactions with arylboronic acids led to various β-substituted corroles in good yields. Fluoroalkylation of the corrole was also studied preliminarily; monofluoroalkylated corrole and five- and six-membered fluorinated ring-fused corroles were synthesized.
Key words
5,10,15-tris(pentafluorophenyl)corrole - partial bromination - Suzuki cross-coupling - fluoroalkylation
- Supporting Information for this article is available online:
- Supporting Information
- 1
The
Porphyrin Handbook
Vols. 1-20:
Kadish KM.Smith KM.Guilard R. Academic Press; San Diego: 2000-2003. -
2a
Paolesse R. In The Porphyrin Handbook Vol. 2:Kadish KM.Smith KM.Guilard R. Academic Press; San Diego: 2000. Chap. 11. p.201-232 -
2b
Erben C.Will S.Kadish KM. In The Porphyrin Handbook Vol. 2:Kadish KM.Smith KM.Guilard R. Academic Press; San Diego: 2000. Chap. 12. p.233-300 -
2c
Paolesse R. Synlett 2008, 2215 -
2d
Gryko DT. J. Porphyrins Phthalocyanines 2008, 12: 906 -
3a
Gross Z.Galili N.Saltsman I. Angew. Chem. Int. Ed. 1999, 38: 1427 -
3b
Gross Z.Galili N.Simkhovich L.Saltsman I.Botoshsnsky M.Blaser D.Boese R.Goldberg I. Org. Lett. 1999, 1: 599 -
3c
Paolesse R.Jaquinod L.Nurco DJ.Mini S.Sagone F.Boschi T.Smith KM. Chem. Commun. 1999, 1307 - 4
Hiroto S.Hisaki I.Shinokubo H.Osuka A. Angew. Chem. Int. Ed. 2005, 44: 6763 -
5a
Saltsman I.Mahammed A.Goldberg I.Tkachenko E.Botoshansky M.Gross Z. J. Am. Chem. Soc. 2002, 124: 7411 -
5b
Paolesse R.Nardis S.Venanzi M.Mastroianni M.Fronczek FR.Vicente MGH. Chem. Eur. J. 2003, 9: 1192 -
5c
Paolesse R.Nardis S.Sagone F.Khoury R. J. Org. Chem. 2001, 66: 550 -
5d
Wasbotten IH.Wondimagegn T.Ghosh A. J. Am. Chem. Soc. 2002, 124: 8104 -
5e
Golubkov G.Bendix J.Gray HB.Mahammed A.Goldberg I.Di Bilio AJ.Gross Z. Angew. Chem. Int. Ed. 2001, 40: 2132 -
5f
Saltsman I.Goldberg I.Gross Z. Tetrahedron Lett. 2003, 44: 5669 - 6
Nardis S.Mandoj F.Paolesse R.Fronczek FR.Smith KM.Prodi L.Montalti M.Battistini G. Eur. J. Inorg. Chem. 2007, 2345 -
7a
Mandoj F.Nardis S.Pomarico G.Paolesse R. J. Porphyrins Phthalocyanines 2008, 12: 19 -
7b
Ngo TH.Van Rossom W.Dehaen W.Maes W. Org. Biomol. Chem. 2009, 7: 439 -
7c
Liu HY.Chen L.Yam F.Zhan HY.Ying X.Wang XL.Jiang HF.Chang CK. Chin. Chem. Lett. 2008, 19: 1000 -
8a
Horn S.Dahms K.Senge MO. J. Porphyrins Phthalocyanines 2008, 12: 1053 -
8b
Shen D.-M.Liu C.Chen X.-G.Chen Q.-Y. J. Org. Chem. 2009, 74: 206 ; and the references cited therein -
9a
Liu C.Shen D.-M.Zeng Z.Guo C.-C.Chen Q.-Y. J. Org. Chem. 2006, 71: 9772 -
9b
Zeng Z.Liu C.Jin L.-M.Guo C.-C.Chen Q.-Y. Eur. J. Org. Chem. 2005, 306 -
9c
Zeng Z.Jin L.-M.Guo C.-C.Chen Q.-Y. Acta Chim. Sin. 2004, 62: 288 -
9d
Jin L.-M.Yin J.-J.Chen L.Xiao J.-C.Guo C.-C.Chen Q.-Y. Eur. J. Org. Chem. 2006, 3405 -
9e
Jin L.-M.Chen L.Guo C.-C.Chen Q.-Y. J. Porphyrins Phthalocyanines 2005, 9: 109 -
9f
Jin L.-M.Chen L.Yin J.-J.Guo C.-C.Chen Q.-Y.
J. Fluorine Chem. 2005, 126: 1321 -
9g
Jin L.-M.Zeng Z.Guo C.-C.Chen Q.-Y. J. Org. Chem. 2003, 68: 3912 -
9h
Chen L.Jin L.-M.Xiao J.-C.Guo C.-C.Chen Q.-Y. Synlett 2007, 2096 -
9i
Chen L.Jin L.-M.Guo C.-C.Chen Q.-Y. Synlett 2005, 963 - 10
Gross Z.Mahammed A. J. Porphyrins Phthalocyanines 2002, 6: 553 - 12
Scrivanti A.Beghetto V.Matteoli U.Antonaroli S.Marini A.Mandoj F.Paolesse R.Crociani B. Tetrahedron Lett. 2004, 45: 5861 - 13
Thomas KE.Wasbotten IH.Ghosh A. Inorg. Chem. 2008, 47: 10469 - 14
Jacques L.Arnaud B. Eur. J. Org. Chem. 2008, 417
References and Notes
General Procedure
for the Synthesis of Brominated Corroles: A solution of NBS
(1.1 equiv was used for the synthesis of monobrominated corroles 2, 2.1 equiv for dibrominated corrole 3, 3.1 equiv for tribrominated corrole 4, and 4.4 equiv for tetrabrominated corrole 5) in MeCN (10 mL) was added dropwise to
corrole 1 (50 mg, 1.0 equiv) dissolved
in CH2Cl2 (10 mL) for 8 h at r.t. After the
addition was completed, the mixture was stirred for further 30 min. Then,
the mixture was subsequently washed with H2O, sat. NaHCO3 and
brine. The organic layer was dried over anhyd Na2SO4,
filtered, and concentrated under reduced pressure to yield the crude
product, which was purified by flash column chromatography.
Corrole 3: ¹H
NMR (300 MHz, CDCl3): δ = 9.37 (d, J = 4.2 Hz, 1 H), 8.89 (d, J = 4.6 Hz, 1 H), 8.72 (d, J = 4.9 Hz, 1 H), 8.66 (d, J = 4.9 Hz, 1 H), 8.49 (overlapping
d, 2 H). ¹9F NMR (CDCl3): δ = -137.66
(dd, ¹
J = 24.2
Hz, ²
J = 8.1
Hz, 2 F),
-138.16 (dd, ¹
J = 23.0 Hz, ²
J = 6.9 Hz, 2 F), -139.00
(t, J = 19.6 Hz, 2 F), -151.69
(t, J = 20.7 Hz, 2 F), -152.25
(t, J = 20.7 Hz, 1 F), -161.32
(td, ¹
J = 23.0
Hz, ²
J = 6.9
Hz, 2 F),
-162.12 (t, J = 18.4
Hz, 4 F). MS (MALDI): m/z = 952.0 [M+].
UV-Vis (CH2Cl2): λ
max (rel.
int.) = 423 (8), 562 (1.17), 637 (1) nm. HRMS (MALDI): m/z [M+] calcd
for C37H9Br2F15N4
+:
951.8949; found: 951.8971.
Corrole
4: ¹H NMR (300 MHz, CDCl3): δ = 9.31
(s, 1 H), 8.82 (d, J = 4.5 Hz,
1 H), 8.69 (d, J = 4.5 Hz, 1
H), 8.62 (d, J = 4.5 Hz, 1 H),
8.52 (d, J = 4.5 Hz, 1 H). ¹9F
NMR (CDCl3): δ = -137.88 (dd, ¹
J = 25.0 Hz, ²
J = 7.3 Hz, 2 F), -138.20
(br s, 2 F), -139.01 (br s, 2 F), -151.40 (br
s, 1 F), -151.64 (t,
J = 22.8
Hz, 1 F), -152.21 (br s, 1 F), -161.28 (dt, ¹
J = 28.2 Hz, ²
J = 6.2 Hz, 4 F), -161.91
(br s, 2 F), -162.31 (br s, 2 F). MS (MALDI): m/z = 1029.8 [M+].
UV-Vis (CH2Cl2):
λmax (rel.
int.) = 424 (6.77), 570 (1.25), 641 (1) nm. HRMS (MALDI): m/z [M+] calcd
for C37H8Br3F15N4
+:
1029.8054; found: 1029.8086. Crystal Data:
C38H8Br3F15N4,
M = 1033.20, monoclinic, space group C2/c, a = 36.433 (16), b = 12.829 (6), c = 15.844 (7) Å, α = 90˚, β = 109.728 (6)˚, γ = 90˚, V = 6970 (6) ų, T = 293 (2) K, Z = 8, D
c = 1.969 g/
cm-³,
10703 reflections measured, 6027 unique which were used in all calculations. R(int) = 0.1667. R
1 = 0.2514. The final wR(F
²)
was 0.0895 (all data). CCDC No: 730338.
Corrole
5: ¹H NMR (300 MHz, CDCl3): δ = 8.64
(d, J = 4.8 Hz, 2 H), 8.45 (d, J = 4.8 Hz, 2 H). ¹9F
NMR (CDCl3): δ =
-137.60
(dd, ¹
J = 24.2
Hz, ²
J = 8.1
Hz, 2 F), -138.48 (dd,
¹
J = 23.0 Hz, ²
J = 6.9 Hz, 4 F), -151.52
(d, 3 F), -161.17 (td, ¹
J = 24.2 Hz, ²
J = 8.1 Hz, 2 F), -161.94
(td, ¹
J = 23.0, ²
J = 6.9 Hz, 4 F). MS (MALDI): m/z = 1029.8 [M+].
UV-Vis (CH2Cl2): λmax (rel.
int.) = 424 (6.78), 571 (1.25), 639 (1) nm. HRMS (MALDI): m/z [M+] calcd
for C37H7Br4F15N4
+: 1107.7159;
found: 1107.7163.
General Procedure
for Fluoroalkylation of Corrole 1: Corrole 1 (50
mg, 0.06 mmol) was dissolved in DMSO
(5 mL), then Na2S2O4 (54.6
mg, 0.3 mmol) was added. To the mixture a DMSO (5 mL) solution of
IC4F8Cl (2.0 equiv) was added dropwise during
a period of time (ca. 3-4 h) under nitrogen at r.t. The
resulting mixture was stirred for further 2 h. The progress of the
reaction was monitored by TLC. After the reaction was finished,
the reaction mixture was diluted with CH2Cl2 (20
mL), and washed with H2O (3 ×). The organic
layer was dried over anhyd Na2SO4, and concentrated
under reduced pressure to dryness. The crude product was purified
by flash column chromatography (silica gel, PE-CH2Cl2 = 5:1
as eluent) to provide the desired products. It should be noted that
corrole 9a and 9b decomposed
slowly during the column chromatography.
Corrole
9a: ¹H NMR (300 MHz, CDCl3): δ = 9.06
(s, 1 H), 8.79 (2 × d, 2 H), 8.70 (d, J = 4.6
Hz, 2 H), 8.57 (d, J = 5.1 Hz,
2 H), 8.51 (d, J = 4.6 Hz, 4
H), 8.48 (d, J = 4.1 Hz, 6 H). ¹9F
NMR (CDCl3): δ = -68.45 (s,
2 F), -102.46 (s, 2 F), -119.82 (s, 2 F), -120.50
(s, 2 F), -137.8 to -138.8 (m, 6 F), -152.1
to -153.0 (m, 3 F), -161.6 to -163.8
(m, 6 F). MS (MALDI): m/z = 1120.2 [M+].
UV-Vis (CH2Cl2): λmax (rel. int.) = 420
(13.5), 561 (2.2), 602 (1.4), 637 (1) nm. HRMS (MALDI): m/z [M + H+] calcd
for C41H11F23N4Cl+: 1031.0299;
found: 1031.0259.