Synlett 2009(18): 3032-3036  
DOI: 10.1055/s-0029-1218276
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Copper-Catalyzed Tandem Reaction of 2-Haloaniline Derivatives with Tetraalkylthiuram Disulfides: Selective Synthesis of 2-Aminobenzothiazoles

Sha-Sha Pi, Xing-Guo Zhang, Ri-Yuan Tang, Jin-Heng Li*
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
Fax: +86(577)88368607; e-Mail: jhli@wzu.edu.cn;
Further Information

Publication History

Received 17 July 2009
Publication Date:
09 October 2009 (online)

Abstract

A simple and efficient protocol for the synthesis of 2-aminobenzothiazoles by copper-catalyzed tandem reaction has been developed. In the presence of CuBr and Cs2CO3, a variety of 2-haloanilines underwent the reaction with tetramethylthiuram di­sulfide (TMTD) efficiently to afford the corresponding 2-aminobenzothiazoles in moderate to excellent yields. The present process allows the construction of 2-aminobenzothiazoles from a wide range of 2-haloaniline derivatives, including 2-iodoanilines, 2-bromoanilines, and 2-chloroanilines.

    References and Notes

  • For selected recent examples, see:
  • 1a Kok SHL. Gambari R. Chui CH. Yuen MCW. Lin E. Wong RSM. Lau FY. Cheng GYM. Lam WS. Chan SH. Lam KH. Cheng CH. Lai PBS. Yu MWY. Cheung F. Tang JCO. Chan ASC. Bioorg. Med. Chem.  2008,  16:  3626 
  • 1b Liu C. Lin J. Pitt S. Zhang RF. Sack JS. Kiefer SE. Kish K. Doweyko AM. Zhang H. Marathe PH. Trzaskos J. Mckinnon M. Dodd JH. Barrish JC. Schieven GL. Leftheris K. Bioorg. Med. Chem. Lett.  2008,  18:  1874 
  • 1c Henriksen G. Hauser AI. Westwell AD. Yousefi BH. Schwaiger M. Drzezga A. Wester H.-J. J. Med. Chem.  2007,  50:  1087 
  • 2 Suter H. Zutter H. Helv. Chim. Acta  1967,  50:  1084 
  • 3a Hays SJ. Rice MJ. Ortwine DF. Johnson G. Schwartz RD. Boyd DK. Copeland LF. Vartanian MG. Boxer PA. J. Pharm. Sci.  1994,  83:  1425 
  • 3b Jimonet P. Audiau F. Barreau M. Blanchard JC. Boireau A. Bour Y. Coleno M.-A. Doble A. Doerflinger G. Huu CD. Donat M.-H. Duchesne JM. Ganil P. Gueremy C. Honore E. Just B. Kerphirique R. Gontier S. Hubert P. Laduron PM. Le Blevec J. Meunier M. Miquet JM. Nemecek C. Pasquet M. Piot O. Pratt J. Rataud J. Reibaud M. Stutzmann JM. Mignani S. J. Med. Chem.  1999,  42:  2828 
  • 3c He Y. Benz A. Fu T. Wang M. Covey DF. Zorumski CF. Mennick S. Neuropharmacology  2002,  42:  199 
  • 4 Shirke VG. Bobade AS. Bhamaria RP. Khadse BG. Sengupta SR. Indian Drugs  1990,  27:  350 
  • For aldehydes, see:
  • 5a Ranu BC. Jana R. Dey S. Chem. Lett.  2004,  33:  274 
  • 5b Itoh T. Nagata K. Ishikawa H. Ohsawa A. Heterocycles  2004,  63:  2769 
  • 5c Kawashita Y. Ueba C. Hayashi M. Tetrahedron Lett.  2006,  47:  4231 
  • 5d Li Y. Wang Y.-L. Wang J.-Y. Chem. Lett.  2006,  35:  460 
  • 5e Pratap UR. Mali JR. Jawale DV. Mane RA. Tetrahedron Lett.  2009,  50:  1352 
  • 5f Kumar A. Maurya RA. Ahmad P. J. Comb. Chem.  2009,  11 198 
  • For carboxylic acid, see:
  • 5g Hein DW. Alhein RJ. Leavitt JJ. J. Am. Chem. Soc.  1957,  79:  427 
  • 5h Ge F.-L. Wang Z.-X. Wan W. Lu W.-C. Hao J. Tetrahedron Lett.  2007,  48:  3251 
  • 6a Jordan AD. Luo C. Retiz AB. J. Org. Chem.  2003,  68:  8693 
  • 6b Mu X.-J. Zou J.-P. Zeng R.-S. Wu J.-C. Tetrahedron Lett.  2005,  46:  4345 
  • 6c Bose DS. Idrees M. J. Org. Chem.  2006,  71:  8261 
  • 6d Bose DS. Idrees M. Tetrahedron Lett.  2007,  48:  669 
  • 6e Bose DS. Idrees M. Srikanth B. Synthesis  2007,  819 
  • 6f Downer-Riley NK. Jackson YA. Tetrahedron  2008,  64:  7741 
  • 6g Inamoto K. Hasegawa C. Hiroya K. Doi T. Org. Lett.  2008,  10:  5147 
  • 6h Thiel OR. Bernard C. King T. Dilmeghani-Seran M. Bostick T. Larsen RD. Faul MM. J. Org. Chem.  2008,  73:  3508 
  • 6i Pande S. Saha A. Jana S. Sarkar S. Basu M. Pradhan M. Sinha AK. Saha S. Pal A. Pal T. Org. Lett.  2009,  11:  2792 
  • 7a Benedi C. Bravo F. Uriz P. Fernandez E. Claver C. Castillon S. Tetrahedron Lett.  2003,  44:  6073 
  • 7b Joyce LL. Evindar G. Batey RA. Chem. Commun.  2004,  446 
  • 7c Evindar G. Batey RA. J. Org. Chem.  2006,  71:  1802 
  • 7d Vera MD. Pelletier JC. J. Comb. Chem.  2007,  9:  569 
  • 7e Itoh T. Mase T. Org. Lett.  2007,  9:  3687 
  • 7f Ding Q. He X. Wu J. J. Comb. Chem.  2009,  11:  587 
  • 8a Grunwell JR. J. Org. Chem.  1970,  35:  1500 
  • 8b Priefer R. Lee YJ. Barrios F. Wosnick JH. Lebuis AM. Farrell PG. Harpp DN. Sun A. Wu S. Snyder JP. J. Am. Chem. Soc.  2002,  124:  5626 
  • 8c Krasovskiy A. Gavryushin A. Knochel P. Synlett  2005,  2691 
  • 8d Krasovskiy A. Gavryushin A. Knochel P. Synlett  2006,  792 
  • 8e Krasovskiy A. Malakhov V. Gavryushin A. Knochel P. Angew. Chem. Int. Ed.  2006,  45:  6040 
  • 9a Tang R.-Y. Zhong P. Lin Q.-L. J. Fluor. Chem.  2006,  127:  948 
  • 9b Tang R.-Y. Zhong P. Lin Q.-L. Synthesis  2007,  85 
  • 9c Wang Z.-L. Tang R.-Y. Luo P.-S. Deng C.-L. Zhong P. Li J.-H. Tetrahedron  2008,  64:  10670 
  • 9d Luo P.-S. Yu M. Tang R.-Y. Zhong P. Li J.-H. Tetrahedron Lett.  2009,  50:  1066 
  • 9e Luo P.-S. Wang F. Li J.-H. Tang R.-Y. Zhong P. Synthesis  2009,  921 
10

General Procedure for the Copper-Catalyzed Tandem Reaction of 2-Haloanilimine Derivatives with Tetraalkylthiuram Disulfides A flame-dried Schlenk tube with a magnetic stirring bar was charged with 2-haloanilimine derivative 1 (0.2 mmol), tetraalkylthiuram disulfide (0.15 mmol), CuBr (1.4 mg, 0.01 mmol), Cs2CO3 (196 mg, 0.6 mmol), and DMSO (1 mL). The reaction mixture was stirred at 80 ˚C for the indicated time (Tables  [¹] and  [²] ) until complete consumption of starting material as monitored by TLC and GC-MS analysis. After the reaction was finished, the mixture was poured into EtOAc, washed with brine (3 × 10 mL), and extracted with EtOAc. The combined organic layers were dried over anhyd Na2SO4 and evaporated under vacuum. The residue was purified by flash column chromatography (hexane-EtOAc) to afford the desired product.
N , N -Dimethy-6-(trifluoromethyl)benzo[ d ]thiazol-2-amine (4)
Mp 98.5-101.1 ˚C(uncorrected). ¹H NMR (300 MHz, CDCl3): δ = 7.84 (s, 1 H), 7.58 (d, J = 8.5 Hz, 1 H), 7.52 (d, J = 8.5 Hz, 1 H), 3.22 (s, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 170.3, 155.8, 131.2, 124.6 (q, J C-F = 269.9 Hz, 1 C), 123.4, 122.8 (d, J C-F = 32.2 Hz, 1 C), 122.1, 118.0, 40.2. ¹9F NMR (283 MHz, CDCl3): δ = -60.79. IR (KBr): 2913, 1616, 1573, 1337, 1145, 1099 cm. LRMS (EI, 70 eV): m/z (%) = 246 (93) [M+], 217 (100). ESI-HRMS: m/z calcd for C10H10F3N2S+ [M + H]+: 247.0511; found: 247.0503.