Aktuelle Neurologie 2009; 36(8): 381-396
DOI: 10.1055/s-0029-1220442
Neues in der Neurologie

© Georg Thieme Verlag KG Stuttgart · New York

Akute bakterielle Meningitis: Neues aus Forschung und Klinik

Acute Bacterial Meningitis: Current Trends in Research and Clinical PracticeU.  Koedel1 , M.  Klein1 , H.-W.  Pfister1
  • 1Klinikum Großhadern der Universität München, Neurologische Klinik und Poliklinik
Further Information

Publication History

Publication Date:
15 September 2009 (online)

Zusammenfassung

Bis zur klinischen Einführung der Antibiotika in den 30er- und 40er-Jahren des vergangenen Jahrhunderts verliefen bakterielle Meningitiden meistens tödlich. Seither kann diese Erkrankung zwar geheilt werden, die Letalität und die Rate an dauerhaften neurologischen Schädigungen sind in Abhängigkeit von Erreger und betroffenem Patient aber weiterhin unerfreulich hoch. In den vergangenen 10 Jahren haben sich die Epidemiologie der Erkrankung, aber auch die Behandlungsmöglichkeiten entscheidend verändert. Die wichtigsten epidemiologischen Veränderungen sind (I) die „Beinahe-Ausrottung” der Haemophilus-influenzae-Typ-B-Meningitis sowie die Abnahme der Pneumokokken- und Meningokokkenmeningitisfälle in Ländern mit hoher Durchimpfungsrate und (II) die zunehmende Ausbreitung resistenter Meningitiserreger. Der entscheidende therapeutische Fortschritt ist, dass nun mit Dexamethason ein Medikament mit erwiesener Wirksamkeit – zumindest bei Erwachsenen mit einer Pneumokokkenmeningitis – für die adjuvante Therapie zur Verfügung steht. Darüber hinaus konnten klinische Studien belegen, dass der Zeitraum zwischen Krankenhausaufnahme und Beginn der Antibiotikatherapie den klinischen Verlauf entscheidend beeinflusst. In diesem Artikel werden zentrale epidemiologische Einflussgrößen wie soziokulturelle und individuelle Faktoren (z. B. Genpolymorphismen) vorgestellt. Zudem werden die aktuellen und die zu erwartenden Möglichkeiten der Impfprophylaxe (insbesondere neue Konjugatimpfstoffe) beschrieben. Ein weiterer Schwerpunkt liegt in der Darstellung des diagnostischen und therapeutischen Vorgehens bei der akuten bakteriellen Meningitis, unter Berücksichtigung der Behandlung meningitisassoziierter intrakranieller Komplikationen. Des Weiteren wird das gegenwärtig gültige Konzept zur Pathophysiologie der akuten bakteriellen Meningitis (am Beispiel der Pneumokokkenmeningitis) skizziert und daraus ableitbare innovative Therapieansätze (wie z. B. der Einsatz nicht lytischer bakterizider Antibiotika) vorgestellt.

Abstract

Until the introduction of antibiotics in the 1930 s and 1940 s, acute bacterial meningitis was fatal in the vast majority of cases. Since then it has become curable with a variable mortality and morbidity rate depending on individual pathogens and patients. During the past 20 years, we have witnessed significant changes in the epidemiology and treatment of acute bacterial meningitis. The most important epidemiological changes are (I) the near-eradication of meningitis due to Haemophilus influenzae type B as well as the decline in the incidence of pneumococcal and meningococcal meningitis in countries that have introduced the respective immunisation programmes, and (II) the emergence of antimicrobial resistance among meningeal pathogens which is of particular importance for the clinical management of the disease. The major therapeutic change is that adjuvant dexamethasone therapy has been demonstrated to be beneficial, particularly in adults with pneumococcal meningitis. It became also evident that time from arrival at the hospital to administration of the first dose of antibiotics is a crucial independent factor that influences outcome. Here we review (I) the epidemiological characteristics of acute bacterial meningitis, (II) the impact of vaccination programmes on the epidemiology, (III) the clinical and laboratory presentation of the disease and (IV) the antibiotic regimens and adjuvant treatment options that are currently recommended for its treatment. We further review (V) current concepts of the pathophysiology of the disease – using the example of pneumococcal meningitis – with an emphasis on promising targets for novel adjunctive therapy in acute bacterial meningitis.

Literatur

  • 1 Tripoli C J. Bacterial meningitis: a comparative study of various therapeutic measures.  JAMA. 1936;  106 171-179
  • 2 Ribble J C, Braude A I. ACTH and adrenal steroids in treatment of pneumococcal meningitis in adults.  Am J Med. 1958;  24 68-79
  • 3 De Gans J, Van de Beek D. Dexamethasone in adults with bacterial meningitis.  N Engl J Med. 2002;  347 1549-1556
  • 4 Van de Beek D, de Gans J, McIntyre P. et al . Corticosteroids for acute bacterial meningitis.  Cochrane Database Syst Rev. 2007;  , CD004405
  • 5 Tyler K L. Bacterial meningitis: an urgent need for further progress to reduce mortality and morbidity.  Neurology. 2008;  70 2095-2096
  • 6 Schuchat A, Robinson K, Wenger J D. et al . Bacterial meningitis in the United States in 1995. Active Surveillance Team.  N Engl J Med. 1997;  337 970-976
  • 7 Van de Beek D, De Gans J, Spanjaard L. et al . Clinical features and prognostic factors in adults with bacterial meningitis.  N Engl J Med. 2004;  351 1849-1859
  • 8 Hussein A S, Shafran S D. Acute bacterial meningitis in adults. A 12-year review.  Medicine (Baltimore ). 2000;  79 360-368
  • 9 Thomas-Rudolph D, Du Clos T W, Snapper C M. et al . C-reactive protein enhances immunity to Streptococcus pneumoniae by targeting uptake to Fc gamma R on dendritic cells.  J Immunol. 2007;  178 7283-7291
  • 10 Klein Klouwenberg P, Bont L. Neonatal and infantile immune responses to encapsulated bacteria and conjugate vaccines.  Clin Dev Immunol. 2008;  2008 , DOI: DOI: 10.1155/2008/628963
  • 11 Siegrist C A, Aspinall R. B-cell responses to vaccination at the extremes of age.  Nat Rev Immunol. 2009;  9 185-194
  • 12 Aw D, Silva A B, Palmer D B. Immunosenescence: emerging challenges for an ageing population.  Immunology. 2007;  120 435-446
  • 13 Pawelec G, Larbi A. Immunity and ageing in man: Annual Review 2006 / 2007.  Exp Gerontol. 2008;  43 34-38
  • 14 Picard C, Puel A, Bustamante J. et al . Primary immunodeficiencies associated with pneumococcal disease.  Curr Opin Allergy Clin Immunol. 2003;  3 451-459
  • 15 Roy S, Knox K, Segal S. et al . MBL genotype and risk of invasive pneumococcal disease: a case-control study.  Lancet. 2002;  359 1569-1573
  • 16 Ku C L, Bernuth H von, Picard C. et al . Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity.  J Exp Med. 2007;  204 2407-2422
  • 17 Bernuth H von, Picard C, Jin Z. et al . Pyogenic bacterial infections in humans with MyD88 deficiency.  Science. 2008;  321 691-696
  • 18 Stephens D S, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis.  Lancet. 2007;  369 2196-2210
  • 19 Brouwer M C, de Gans J, Heckenberg S G. et al . Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis.  Lancet Infect Dis. 2008;  9 31-44
  • 20 Brouwer M C, Van de Beek D. Genetics in meningococcal disease: one step beyond.  Clin Infect Dis. 2009;  48 595-597
  • 21 Trotter C L, Greenwood B M. Meningococcal carriage in the African meningitis belt.  Lancet Infect Dis. 2007;  7 797-803
  • 22 Roberts L. Infectious disease. An ill wind, bringing meningitis.  Science. 2008;  320 1710-1715
  • 23 Wilder-Smith A. Meningococcal disease: risk for international travellers and vaccine strategies.  Travel Med Infect Dis. 2008;  6 182-186
  • 24 Morris S K, Moss W J, Halsey N. Haemophilus influenzae type b conjugate vaccine use and effectiveness.  Lancet Infect Dis. 2008;  8 435-443
  • 25 van de Sande-Bruinsma N, Grundmann H, Verloo D. et al . Antimicrobial drug use and resistance in Europe.  Emerg Infect Dis. 2008;  14 1722-1730
  • 26 Goossens H, Ferech M, Van der Stichele R. et al . Outpatient antibiotic use in Europe and association with resistance: a cross-national database study.  Lancet. 2005;  365 579-587
  • 27 Dagan R. Impact of pneumococcal conjugate vaccine on infections caused by antibiotic-resistant Streptococcus pneumoniae.  Clin Microbiol Infect. 2009;  15 (Suppl. 3) 16-20
  • 28 Artz A S, Ershler W B, Longo D L. Pneumococcal vaccination and revaccination of older adults.  Clin Microbiol Rev. 2003;  16 308-318
  • 29 von Kries R, Windfuhr A, Lucking A. et al . Preventing Haemophilus influenzae meningitis: Germany's experience.  Lancet. 1994;  344 469
  • 30 Kalies H, Grote V, Siedler A. et al . Effectiveness of hexavalent vaccines against invasive Haemophilus influenzae type b disease: Germany's experience after 5 years of licensure.  Vaccine. 2008;  26 2545-2552
  • 31 Kalies H, Siedler A, Grondahl B. et al . Invasive Haemophilus influenzae infections in Germany: impact of non-type b serotypes in the post-vaccine era.  BMC Infect Dis. 2009;  9 45
  • 32 Campbell H, Borrow R, Salisbury D. et al . Meningococcal C conjugate vaccine: The experience in England and Wales.  Vaccine. 2009;  27 (Suppl. 2) B20-B29
  • 33 Maiden M C, Ibarz-Pavon A B, Urwin R. et al . Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity.  J Infect Dis. 2008;  197 737-743
  • 34 Scarselli M, Rappuoli R, Scarlato V. A common conserved amino acid motif module shared by bacterial and intercellular adhesins: bacterial adherence mimicking cell cell recognition?.  Microbiology. 2001;  147 250-252
  • 35 O'Hallahan J, McNicholas A, Galloway Y. et al . Delivering a safe and effective strain-specific vaccine to control an epidemic of group B meningococcal disease.  N Z Med J. 2009;  122 48-59
  • 36 Kelly C, Arnold R, Galloway Y. et al . A prospective study of the effectiveness of the New Zealand meningococcal B vaccine.  Am J Epidemiol. 2007;  166 817-823
  • 37 Ulmer J B, Valley U, Rappuoli R. Vaccine manufacturing: challenges and solutions.  Nat Biotechnol. 2006;  24 1377-1383
  • 38 Farrell D J, Jenkins S G, Reinert R R. Global distribution of Streptococcus pneumoniae serotypes isolated from paediatric patients during 1999–2000 and the in vitro efficacy of telithromycin and comparators.  J Med Microbiol. 2004;  53 1109-1117
  • 39 Progress in introduction of pneumococcal conjugate vaccine – worldwide, 2000–2008.  MMWR Morb Mortal Wkly Rep. 2008;  57 1148-1151
  • 40 Hsu H E, Shutt K A, Moore M R. et al . Effect of pneumococcal conjugate vaccine on pneumococcal meningitis.  N Engl J Med. 2009;  360 244-256
  • 41 Rückinger S, van der Linden M, Reinert R R. et al . Reduction in the incidence of invasive pneumococcal disease after general vaccination with 7-valent pneumococcal conjugate vaccine in Germany.  Vaccine. 2009;  27 4136-4141
  • 42 Niederkorn J Y. See no evil, hear no evil, do no evil: the lessons of immune privilege.  Nat Immunol. 2006;  7 354-359
  • 43 Lewis K. Programmed death in bacteria.  Microbiol Mol Biol Rev. 2000;  64 503-514
  • 44 Beutler B A. TLRs and innate immunity.  Blood. 2009;  113 1399-1407
  • 45 Chen G, Shaw M H, Kim Y G. et al . NOD-like receptors: role in innate immunity and inflammatory disease.  Annu Rev Pathol. 2009;  4 365-398
  • 46 Echchannaoui H, Frei K, Schnell C. et al . Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation.  J Infect Dis. 2002;  186 798-806
  • 47 Koedel U, Angele B, Rupprecht T. et al . Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis.  J Immunol. 2003;  170 438-444
  • 48 Klein M, Angele B, Pfister H W. et al . Detection of pneumococcal infection of the central nervous system depends upon TLR2 and TLR4.  J Infect Dis. 2008;  198 1028-1036
  • 49 Koedel U, Rupprecht T, Angele B. et al . MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS.  Brain. 2004;  127 1437-1445
  • 50 Koedel U, Bayerlein I, Paul R. et al . Pharmacological interference with NF-B activation attenuates central nervous system complications in experimental pneumococcal meningitis.  J Infect Dis. 2000;  182 1437-1445
  • 51 Tsuchiya K, Toyama K, Tsuprun V. et al . Pneumococcal peptidoglycan-polysaccharides induce the expression of interleukin-8 in airway epithelial cells by way of nuclear factor-κB, nuclear factor interleukin-6, or activation protein-1 dependent mechanisms.  Laryngoscope. 2007;  117 86-91
  • 52 Nau R, Bruck W. Neuronal injury in bacterial meningitis: mechanisms and implications for therapy.  Trends Neurosci. 2002;  25 38-45
  • 53 Koedel U, Scheld W M, Pfister H W. Pathogenesis and pathophysiology of pneumococcal meningitis.  Lancet Infect Dis. 2002;  2 721-736
  • 54 Weber J R, Tuomanen E I. Cellular damage in bacterial meningitis: An interplay of bacterial and host driven toxicity.  J Neuroimmunol. 2007;  184 45-52
  • 55 Brown J S, Hussell T, Gilliland S M. et al . The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice.  Proc Natl Acad Sci USA. 2002;  99 16 969-16 974
  • 56 Rupprecht T A, Angele B, Klein M. et al . Complement C1q and C3 are critical for the innate immune response to Streptococcus pneumoniae in the central nervous system.  J Immunol. 2007;  178 1861-1869
  • 57 Ernst J D, Decazes J M, Sande M A. Experimental pneumococcal meningitis: role of leukocytes in pathogenesis.  Infect Immun. 1983;  41 275-279
  • 58 Toomey J A, Roach F. Pneumococcus meningitis.  Ohio Sate MJ. 1939;  35 841ff
  • 59 Gerber J, Raivich G, Wellmer A. et al . A mouse model of Streptococcus pneumoniae meningitis mimicking several features of human disease.  Acta Neuropathol. 2001;  101 499-508
  • 60 Klein M, Paul R, Angele B. et al . Protein expression pattern in experimental pneumococcal meningitis.  Microbes Infect. 2006;  8 974-983
  • 61 Arevalo C E, Barnes P F, Duda M. et al . Cerebrospinal fluid cell counts and chemistries in bacterial meningitis.  South Med J. 1989;  82 1122-1127
  • 62 Viallon A, Guyomarc'h P, Guyomarc'h S. et al . Decrease in serum procalcitonin levels over time during treatment of acute bacterial meningitis.  Crit Care. 2005;  9 R344-R350
  • 63 Kornelisse R F, Savelkoul H FJ, Mulder P HG. et al . Interleukin-10 and soluble tumor necrosis factor receptors in cerebrospinal fluid of children with bacterial meningitis.  J Infect Dis. 1996;  173 1498-1502
  • 64 Ichiyama T, Hayashi T, Nishikawa M. et al . Levels of transforming growth factor β1, tumor necrosis factor-α, and interleukin 6 in cerebrospinal fluid: association with clinical outcome for children with bacterial meningitis.  Clin Infect Dis. 1997;  25 328-329
  • 65 Kastenbauer S, Angele B, Sporer B. et al . Patterns of protein expression in infectious meningitis: A cerebrospinal fluid protein array analysis.  J Neuroimmunol. 2005;  164 134-139
  • 66 Pfister H W, Frei K, Ottnad B. et al . Transforming growth factor ß2 inhibits cerebrovascular changes and brain edema formation in the tumor necrosis factor alpha-independent early phase of experimental pneumococcal meningitis.  J Exp Med. 1992;  176 265-268
  • 67 Paris M M, Hickey S M, Trujillo M. et al . The effect of interleukin-10 on meningeal inflammation in experimental bacterial meningitis.  J Infect Dis. 1997;  176 1239-1246
  • 68 Coxon A, Tang T, Mayadas T N. Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo. A role for granulocyte / macrophage colony-stimulating factor.  J Exp Med. 1999;  190 923-934
  • 69 Nau R, Zettl U, Gerber J. et al . Granulocytes in the subarachnoid space of humans and rabbits with bacterial meningitis undergo apoptosis and are eliminated by macrophages.  Acta Neuropathol. 1998;  96 472-480
  • 70 Paul R, Angele B, Sporer B. et al . Inflammatory response during bacterial meningitis is unchanged in Fas- and Fas ligand-deficient mice.  J Neuroimmunol. 2004;  152 78-82
  • 71 Hoffmann O, Priller J, Prozorovski T. et al . TRAIL limits excessive host immune responses in bacterial meningitis.  J Clin Invest. 2007; 
  • 72 Kim K S. Neurological diseases: Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury.  Nat Rev Neurosci. 2003;  4 376-385
  • 73 Klein M, Koedel U, Pfister H W. Oxidative stress in pneumococcal meningitis: a future target for adjunctive therapy?.  Prog Neurobiol. 2006;  80 269-280
  • 74 Kastenbauer S, Pfister H W. Pneumococcal meningitis in adults: Spectrum of complications and prognostic factors in a series of 87 cases.  Brain. 2003;  126 1015-1025
  • 75 Ostergaard C, Konradsen H B, Samuelsson S. Clinical presentation and prognostic factors of Streptococcus pneumoniae meningitis according to the focus of infection.  BMC Infect Dis. 2005;  5 93
  • 76 Attia J, Hatala R, Cook D J. et al . The rational clinical examination.  Does this adult patient have acute meningitis? JAMA. 1999;  282 175-181
  • 77 Thomas K E, Hasbun R, Jekel J. et al . The diagnostic accuracy of Kernig's sign, Brudzinski's sign, and nuchal rigidity in adults with suspected meningitis.  Clin Infect Dis. 2002;  35 46-52
  • 78 Spanos A, Harrell F EJ, Durack D T. Differential diagnosis of acute meningitis. An analysis of the predictive value of initial observations.  JAMA. 1989;  262 2700-2707
  • 79 Kleine T O, Zwerenz P, Zofel P. et al . New and old diagnostic markers of meningitis in cerebrospinal fluid (CSF).  Brain Res Bull. 2003;  61 287-297
  • 80 Dubos F, Korczowski B, Aygun D A. et al . Serum procalcitonin level and other biological markers to distinguish between bacterial and aseptic meningitis in children: a European multicenter case cohort study.  Arch Pediatr Adolesc Med. 2008;  162 1157-1163
  • 81 Ray P, Badarou-Acossi G, Viallon A. et al . Accuracy of the cerebrospinal fluid results to differentiate bacterial from non bacterial meningitis, in case of negative gram-stained smear.  Am J Emerg Med. 2007;  25 179-184
  • 82 Shameem S, Vinod Kumar C S, Neelagund Y F. Bacterial meningitis: rapid diagnosis and microbial profile: a multicentered study.  J Commun Dis. 2008;  40 111-120
  • 83 Neuman M I, Tolford S, Harper M B. Test characteristics and interpretation of cerebrospinal fluid gram stain in children.  Pediatr Infect Dis J. 2008;  27 309-313
  • 84 Dunbar S A, Eason R A, Musher D M. et al . Microscopic examination and broth culture of cerebrospinal fluid in diagnosis of meningitis.  J Clin Microbiol. 1998;  36 1617-1620
  • 85 Nigrovic L E, Kuppermann N, Malley R. Children with bacterial meningitis presenting to the emergency department during the pneumococcal conjugate vaccine era.  Acad Emerg Med. 2008;  15 522-528
  • 86 Fuglsang-Damgaard D, Pedersen G, Schonheyder H C. Positive blood cultures and diagnosis of bacterial meningitis in cases with negative culture of cerebrospinal fluid.  Scand J Infect Dis. 2008;  40 229-233
  • 87 Gray L D, Fedorko D P. Laboratory diagnosis of bacterial meningitis.  Clin Microbiol Rev. 1992;  5 130-145
  • 88 Feigin R D, McCracken Jr G H, Klein J O. Diagnosis and management of meningitis.  Pediatr Infect Dis J. 1992;  11 785-814
  • 89 Nigrovic L E, Kuppermann N, McAdam A J. et al . Cerebrospinal latex agglutination fails to contribute to the microbiologic diagnosis of pretreated children with meningitis.  Pediatr Infect Dis J. 2004;  23 786-788
  • 90 Narkeviciute I, Bernatoniene J, Mikelionyte A. et al . Aetiological diagnostics of acute bacterial meningitis in children.  Scand J Infect Dis. 2006;  38 782-787
  • 91 Kennedy W A, Chang S J, Purdy K. et al . Incidence of bacterial meningitis in Asia using enhanced CSF testing: polymerase chain reaction, latex agglutination and culture.  Epidemiol Infect. 2007;  135 1217-1226
  • 92 Van Gastel E, Bruynseels P, Verstrepen W. et al . Evaluation of a real-time polymerase chain reaction assay for the diagnosis of pneumococcal and meningococcal meningitis in a tertiary care hospital.  Eur J Clin Microbiol Infect Dis. 2007;  26 651-653
  • 93 de Filippis I, do Nascimento C R, Clementino M B. et al . Rapid detection of Neisseria meningitidis in cerebrospinal fluid by one-step polymerase chain reaction of the nspA gene.  Diagn Microbiol Infect Dis. 2005;  51 85-90
  • 94 Nigrovic L E, Kuppermann N, Macias C G. et al . Clinical prediction rule for identifying children with cerebrospinal fluid pleocytosis at very low risk of bacterial meningitis.  JAMA. 2007;  297 52-60
  • 95 Chavanet P, Schaller C, Levy C. et al . Performance of a predictive rule to distinguish bacterial and viral meningitis.  J Infect. 2007;  54 328-336
  • 96 Steichen O, Martinez-Almoyna L. Prediction rules for bacterial meningitis.  J Infect. 2007;  55 383
  • 97 Joffe A R. Lumbar puncture and brain herniation in acute bacterial meningitis: a review.  J Intensive Care Med. 2007;  22 194-207
  • 98 Proulx N, Frechette D, Toye B. et al . Delays in the administration of antibiotics are associated with mortality from adult acute bacterial meningitis.  QJM. 2005;  98 291-298
  • 99 Auburtin M, Wolff M, Charpentier J. et al . Detrimental role of delayed antibiotic administration and penicillin-nonsusceptible strains in adult intensive care unit patients with pneumococcal meningitis.  Crit Care Med. 2006;  34 2758-2765
  • 100 Koster-Rasmussen R, Korshin A, Meyer C N. Antibiotic treatment delay and outcome in acute bacterial meningitis.  J Infect. 2008;  57 449-454
  • 101 Rubinstein E. Short antibiotic treatment courses or how short is short?.  Int J Antimicrob Agents. 2007;  30 (Suppl. 1) S76-S79
  • 102 Briggs S, Ellis-Pegler R, Roberts S. et al . Short course intravenous benzylpenicillin treatment of adults with meningococcal disease.  Intern Med J. 2004;  34 383-387
  • 103 Crosswell J M, Nicholson W R, Lennon D R. Rapid sterilisation of cerebrospinal fluid in meningococcal meningitis: Implications for treatment duration.  J Paediatr Child Health. 2006;  42 170-173
  • 104 Lin T Y, Chrane D F, Nelson J D. et al . Seven days of ceftriaxone therapy is as effective as ten days' treatment for bacterial meningitis.  JAMA. 1985;  253 3559-3563
  • 105 Singhi P, Kaushal M, Singhi S. et al . Seven days vs. 10 days ceftriaxone therapy in bacterial meningitis.  J Trop Pediatr. 2002;  48 273-279
  • 106 Lowenberg M, Stahn C, Hommes D W. et al . Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands.  Steroids. 2008;  73 1025-1029
  • 107 Van de Beek D, De Gans J, McIntyre P. Corticosteroids in acute bacterial meningitis.  Cochrane Database Syst Rev. 2003;  , CD004405
  • 108 Van de Beek D, De Gans J, McIntyre P. et al . Steroids in adults with acute bacterial meningitis: a systematic review.  Lancet Infect Dis. 2004;  4 139-143
  • 109 Van de Beek D, De Gans J, McIntyre P. et al . Corticosteroids for acute bacterial meningitis.  Cochrane Database Syst Rev. 2007;  , CD004405
  • 110 Paris M M, Hickey S M, Uscher M I. et al . Effect of dexamethasone on therapy of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis.  Antimicrob Agents Chemother. 1994;  38 1320-1324
  • 111 Ahmed A, Jafri H, Lutsar I. et al . Pharmacodynamics of vancomycin for the treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis.  Antimicrob Agents Chemother. 1999;  43 876-881
  • 112 Martinez-Lacasa J, Cabellos C, Martos A. et al . Experimental study of the efficacy of vancomycin, rifampicin and dexamethasone in the therapy of pneumococcal meningitis.  J Antimicrob Chemother. 2002;  49 507-513
  • 113 Nguyen T H, Tran T H, Thwaites G. et al . Dexamethasone in Vietnamese adolescents and adults with bacterial meningitis.  N Engl J Med. 2007;  357 2431-2440
  • 114 Scarborough M, Gordon S B, Whitty C J. et al . Corticosteroids for bacterial meningitis in adults in sub-Saharan Africa.  N Engl J Med. 2007;  357 2441-2450
  • 115 Peltola H, Roine I, Fernandez J. et al . Adjuvant glycerol and / or dexamethasone to improve the outcomes of childhood bacterial meningitis: a prospective, randomized, double-blind, placebo-controlled trial.  Clin Infect Dis. 2007;  45 1277-1286
  • 116 Vardakas K Z, Matthaiou D K, Falagas M E. Adjunctive dexamethasone therapy for bacterial meningitis in adults: a meta-analysis of randomized controlled trials.  Eur J Neurol. 2009;  16 662-673
  • 117 Durand M L, Calderwood S B, Weber D J. et al . Acute bacterial meningitis in adults: a review of 493 episodes.  N Engl J Med. 1993;  328 21-28
  • 118 Pfister H W, Feiden W, Einhäupl K M. Spectrum of complications during bacterial meningitis in adults.  Arch Neurol. 1993;  505 575-581
  • 119 Weisfelt M, Van de Beek D, Spanjaard L. et al . Clinical features, complications, and outcome in adults with pneumococcal meningitis: a prospective case series.  Lancet Neurol. 2006;  5 123-129
  • 120 Winkler F, Kastenbauer S, Yousry T A. et al . Discrepancies between brain CT imaging and severely raised intracranial pressure proven by ventriculostomy in adults with pneumococcal meningitis.  J Neurol. 2002;  249 1292-1297
  • 121 Kramer A H, Bleck T P. Neurocritical care of patients with central nervous system infections.  Curr Infect Dis Rep. 2007;  9 308-314
  • 122 Southwick F S. Septic thrombophlebitis of major dural venous sinuses.  Curr Clin Top Infect Dis. 1995;  15 179-203
  • 123 Stucki A, Cottagnoud M, Winkelmann V. et al . Daptomycin produces an enhanced bactericidal activity compared to ceftriaxone, measured by [3H]choline release in the cerebrospinal fluid, in experimental meningitis due to a penicillin-resistant pneumococcal strain without lysing its cell wall.  Antimicrob Agents Chemother. 2007;  51 2249-2252
  • 124 Grandgirard D, Schurch C, Cottagnoud P. et al . Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis.  Antimicrob Agents Chemother. 2007;  51 2173-2178
  • 125 Braun J S, Sublett J E, Freyer D. et al . Pneumococcal pneumolysin and H2O2 mediate brain cell apoptosis during meningitis.  J Clin Invest. 2002;  109 19-27
  • 126 Schneider O, Michel U, Zysk G. et al . Clinical outcome in pneumococcal meningitis correlates with CSF lipoteichoic acid concentrations.  Neurology. 1999;  53 1584-1587
  • 127 Straus S K, Hancock R E. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides.  Biochim Biophys Acta. 2006;  1758 1215-1223
  • 128 Mook-Kanamori B B, Rouse M S, Kang C I. et al . Daptomycin in experimental murine pneumococcal meningitis.  BMC Infect Dis. 2009;  9 50
  • 129 Silverman J A, Mortin L I, Vanpraagh A D. et al . Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact.  J Infect Dis. 2005;  191 2149-2152
  • 130 Egermann U, Stanga Z, Ramin A. et al .The Combination of daptomycin plus ceftriaxone was more active than vancomycin plus ceftriaxone in experimental meningitis after addition of dexamethasone. Antimicrob Agents Chemother 2009
  • 131 Spanjaard L, Vandenbroucke-Grauls C M. Activity of daptomycin against Listeria monocytogenes isolates from cerebrospinal fluid.  Antimicrob Agents Chemother. 2008;  52 1850-1851
  • 132 Tuomanen E I, Saukkonen K, Sande S. et al . Reduction of inflammation, tissue damage, and mortality in bacterial meningitis in rabbits treated with monoclonal antibodies against adhesion-promoting receptors of leukocytes.  J Exp Med. 1989;  170 959-969
  • 133 Rossi A G, Sawatzky D A, Walker A. et al . Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis.  Nat Med. 2006;  12 1056-1064
  • 134 Koedel U, Frankenberg T, Kirschnek S. et al . Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis.  PLoS Pathog. 2009;  5 e1000461

PD Dr. Uwe Koedel

Klinikum Großhadern der Universität München, Neurologische Klinik und Poliklinik

Marchioninistr. 15

81377 München

Email: uwe.koedel@med.uni-muenchen.de

    >