Klinische Neurophysiologie 2009; 40(4): 214-221
DOI: 10.1055/s-0029-1242755
Originalia

© Georg Thieme Verlag KG Stuttgart · New York

Echtzeit-fMRT

Real-Time fMRIF. Scharnowski1 , 2 , K. Mathiak3 , N. Weiskopf1
  • 1Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom
  • 2Institute of Cognitive Neuroscience, University College London, United Kingdom
  • 3Department Psychiatry and Psychotherapy, JARA-Brain, RWTH Aachen University, Germany
Further Information

Publication History

Publication Date:
28 December 2009 (online)

Zusammenfassung

Technische Neuerungen auf dem Gebiet der funktionellen Magnetresonanztomografie (fMRT) erlauben es, die Messergebnisse in Echtzeit verfügbar zu machen. Dies ermöglicht völlig neue Einsatzmöglichkeiten der fMRT. Im vorliegenden Übersichtsartikel werden die technischen Voraussetzungen der Echtzeit-fMRT, sowie die wissenschaftlichen und klinischen Innovationsmöglichkeiten erläutert. Insbesondere wird die Anwendung der willentlichen Kontrolle über Hirnaktivität in abgegrenzten Hirnarealen mittels fMRT-Neurofeedbacks diskutiert. Des Weiteren, werden die Anwendung der Echtzeit-fMRT als Gehirn-Computer-Schnittstelle etwa zur Kommunikation mit Patienten im Wachkoma, sowie die intraoperative Echtzeit-fMRT erläutert.

Abstract

As a result of recent technological advances in the field of functional magnetic resonance imaging (fMRI), the results can now be made available in real-time. This makes completely new applications possible. In this review, we discuss the technical requirements and new applications of real-time fMRI. In particular, we elaborate on the possibility to learn to voluntarily control brain activity in circumscribed brain areas with the help of fMRI-based neurofeedback. In addition, we consider real-time fMRI for brain-computer interfaces to communicate with vegetative state patients, as well as intraoperative real-time fMRI.

Literatur

  • 1 Schneider F, Fink GR. Funktionelle MRT in Psychatrie und Neurologie. Springer Medizin Verlag, Heidelberg, Germany 2007
  • 2 Weiskopf N, Sitaram R, Josephs O. et al . Real-time functional magnetic resonance imaging: Methods and applications.  Magnetic Resonance Imaging. 2007;  25 989-1003
  • 3 Weiskopf N, Scharnowski F, Veit R. et al . Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI).  Journal of Physiology-Paris. 2004;  98 357-373
  • 4 Robitaille PM, Berliner L. Ultra High Field Magnetic Resonance Imaging. Springer Science+Business Media, New York, USA 2006
  • 5 Krüger G, Kastrup A, Glover GH. Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging.  Magnetic Resonance in Medicine. 2001;  45 595-604
  • 6 Hollmann M, Mönch T, Mulla-Osman S. et al . A new concept of a unified parameter management, experiment control, and data analysis in fMRI: Application to real-time fMRI at 3 T and 7 T.  Journal of Neuroscience Methods. 2008;  175 154-162
  • 7 Jezzard P, Clare S. Sources of distortion in functional MRI data.  Human Brain Mapping. 1999;  8 80-85
  • 8 Weiskopf N, Mathiak K, Bock SW. et al . Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI).  IEEE Transactions on Biomedical Engineering. 2004;  51 966-970
  • 9 Weiskopf N, Klose U, Birbaumer N. et al . Single-shot compensation of image optimization using multi-echo EPI distortions and BOLD contrast for real-time fMRI.  Neuroimage. 2005;  24 1068-1079
  • 10 Mathiak K, Rapp A, Kircher TTJ. et al . Mismatch responses to randomized gradient switching noise as reflected by fMRI and wholehead magnetoencephalography.  Human Brain Mapping. 2002;  16 190-195
  • 11 Posse S, Wiese S, Gembris D. et al . Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging.  Magnetic Resonance in Medicine. 1999;  42 87-97
  • 12 deCharms RC, Christoff K, Glover GH. et al . Learned regulation of spatially localized brain activation using real-time fMRI.  NeuroImage. 2004;  21 436-443
  • 13 Cox RW, Jesmanowicz A. Real-time 3D image registration for functional MRI.  Magnetic Resonance Imaging. 1999;  42 1014-1018
  • 14 Mathiak K, Posse S. Evaluation of motion and realignment for functional magnetic resonance imaging in real time.  Magnetic Resonance Imaging. 2001;  45 167-171
  • 15 Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR.  Magnetic Resonance in Medicine. 2000;  44 162-167
  • 16 Kastrup A, Krüger G, Glover GH. et al . Assessment of cerebral oxidative metabolism with breath holding and fMRI.  Magnetic Resonance in Medicine. 1999;  42 608-611
  • 17 Posse S, Kemna LJ, Elghahwagi B. et al . Effect of graded hypo- and hypercapnia on fMRI contrast in visual cortex: quantification of T-2* changes by multiecho EPI.  Magnetic Resonance in Medicine. 2001;  46 264-271
  • 18 Josephs O, Howseman AM, Friston K. et al .Physiological noise modelling for multi-slice EPI fMRI using SPM. Proceedings of the 5th Annual Meeting of ISMRM, Vancouver, Canada 1997: 1682
  • 19 Worsley KJ, Friston K. Analysis of fMRI time-series revisited – again.  NeuroImage. 1995;  2 173-181
  • 20 Gembris D, Taylor JG, Schor S. et al . Functional magnetic resonance imaging in real time (FIRE): sliding-window correlation analysis and reference-vector optimization.  Magnetic Resonance Imaging. 2000;  43 259-268
  • 21 Bagarinao E, Nakai T, Tanaka Y. Real-time functional MRI: Development and emerging applications.  Magnetic Resonance in Medical Science. 2006;  5 157-165
  • 22 Mulholland T, Boudrot R, Davidson A. Feedback delay and amplitude threshold and control of the occipital EEG.  Biofeedback and Self Regulation. 1979;  4 93-102
  • 23 Rockstroh B, Elbert T, Birbaumer N. et al . Biofeedback-produced hemispheric asymmetry of slow cortical potentials and its behavioural effects.  International Journal of Psychophysiology. 1990;  9 151-165
  • 24 Friston KJ, Harrison L, Penny W. Dynamic causal modelling.  Neuroimage. 2003;  19 1273-1302
  • 25 Roebroeck A, Formisano E, Göbel R. Mapping directed influence over the brain using Granger causality and fMRI.  NeuroImage. 2005;  25 230-242
  • 26 Posse S, Fitzgerald D, Gao KX. et al . Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness.  Neuroimage. 2003;  18 760-768
  • 27 deCharms RC, Maeda F, Glover GH. et al . Control over brain activation and pain learned by using real-time functional MRI.  Proceedings of the National Academy of Sciences of the United States of America. 2005;  102 18626-18631
  • 28 deCharms RC. Reading and controlling human brain activation using real-time functional magnetic resonance imaging.  Trends in Cognitive Science. 2007;  11 473-481
  • 29 Yoo SS, Fairneny T, Chen NK. et al . Brain-computer interface using fMRI: spatial navigation by thoughts.  Neuroreport. 2004;  15 1591-1595
  • 30 Yoo SS, Jolesz FA. Functional MRI for neurofeedback: feasibility study on a hand motor task.  Neuroreport. 2002;  13 1377-1381
  • 31 Bray S, Shimojo S, O’Doherty JP. Direct instrumental conditioning of neural activity using functional magnetic resonance imaging-derived reward feedback.  Journal of Neuroscience. 2007;  27 7498-7507
  • 32 Johnston SJ, Böhm SG, Healy D. et al . Neurofeedback: A promising tool for the self-regulation of emotion networks.  NeuroImage. 2009;  In press 
  • 33 Caria A, Veit R, Sitaram R. et al . Regulation of anterior insular cortex activity using real-time fMRI.  Neuroimage. 2007;  35 1238-1246
  • 34 Rota G, Sitaram R, Veit R. et al . Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing.  Human Brain Mapping. 2009;  30 1605-1614
  • 35 Weiskopf N, Veit R, Erb M. et al . Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data.  Neuroimage. 2003;  19 577-586
  • 36 Habel U, Mathiak K. Realtime-fMRT: Perspektiven für die klinische Praxis.  Verhaltenstherapie. 2009;  19 94-102
  • 37 Mackey SC, Maeda F. Functional imaging and the neural systems of chronic pain.  Neurosurgery Clinics of North America. 2004;  15 269-288
  • 38 Rainville P. Brain mechanisms of pain affect and pain modulation.  CurOpNeurobio. 2002;  12 195-204
  • 39 Petrovic P, Ingvar M. Imaging cognitive modulation of pain processing.  Pain. 2002;  95 1-5
  • 40 Melzack R. The short form McGill Pain Questionnaire.  Pain. 1987;  30 191-197
  • 41 Kamitani Y, Tong F. Decoding seen and attended motion directions from activity in the human visual cortex.  Current Biology. 2006;  16 1096-1102
  • 42 Harrison SA, Tong F. Decoding reveals the contents of visual working memory in early visual areas.  Nature. 2009;  458 632-635
  • 43 Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain.  NatNeuro. 2005;  8 679-685
  • 44 Haynes JD, Sakai K, Rees G. et al . Reading hidden intentions in the human brain.  Current Biology. 2007;  17 323-328
  • 45 Haynes JD, Rees G. Decoding mental states from brain activity in humans.  Nature Reviews Neuroscience. 2006;  7 523-534
  • 46 Haynes JD, Rees G. Predicting the orientation of invisible stimuli from activity in human primary visual cortex.  NatNeuro. 2005;  8 686-691
  • 47 Haynes JD, Rees G. Predicting the stream of consciousness from activity in human visual cortex.  Current Biology. 2005;  15 1301-1307
  • 48 Haynes JD, Rees G. “Brain reading” – Using signals from human VI to predict the orientation of an invisible stimulus.  JCogNeuro. 2005;  250-251
  • 49 Hassabis D, Chu C, Rees G. et al . Decoding neuronal ensembles in the human hippocampus.  Current Biology. 2009;  19 546-554
  • 50 Norman KA, Polyn SM, Detre GJ. et al . Beyond mind-reading: multi-voxel pattern analysis of fMRI data.  Trends in Cognitive Science. 2006;  10 424-430
  • 51 Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex.  Neuroimage. 2003;  19 261-270
  • 52 LaConte SM, Peltier SJ, Hu XP. Real-time fMRI using brain state classification.  Human Brain Mapping. 2007;  28 1033-1044
  • 53 Hollmann M, Mönch T, Müller C. et al . Predicting human decisions in socioeconomic interaction using real-time functional magnetic resonance imaging (rtfMRI).  Proceedings of the SPIE-Medical Imaging. 2009; 
  • 54 Göbel R, Sorger B, Kaiser J. et al . BOLD brain pong: Self regulation of local brain activity during synchronously scanned, interacting subjects.  34th Annual Meeting of the Society for Neuroscience. 2004;  Program No. 376.2. 
  • 55 Sorger B, Dahmen B, Reithler J. et al . Another kind of “BOLD Response”: answering multiple-choice questions via online decoded single-trial brain signals.  Progress in Brain Research. 2009;  in press 
  • 56 The vegetative state: guidance on diagnosis and management. Royal College of Physicians, London 1996
  • 57 Medical aspects of a persistent vegetative state. New England Journal of Medicine. 1994;  330 499-508
  • 58 Owen AM, Coleman MR, Davis MH. et al . Detecting awareness in the vegetative state.  Science. 2006;  313 1402
  • 59 Owen AM, Coleman MR. Functional imaging of the vegetative state.  Nature Neuroscience Reviews. 2008;  9 235-243
  • 60 Wolpaw JR, Birbaumer N, Heetderks WJ. et al . Brain–computer interface technology: A review of the first international meeting.  IEEE Transactions on rehabilitation engineering. 2000;  8 164-173
  • 61 Kubler A, Nijboer F, Mellinger J. et al . Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface.  Neurology. 2005;  64 1775-1777
  • 62 Birbaumer N, Ghanayim N, Hinterberger T. et al . A spelling device for the paralysed.  Nature. 1999;  398 297-298
  • 63 Wolpaw JR, Birbaumer N, McFarland DJ. et al . Brain-computer interfaces for communication and control.  Clinical Neurophysiology. 2002;  113 767-791
  • 64 Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.  Proceedings of the National Academy of Sciences of the United States of America. 2004;  101 17849-17854
  • 65 Hall WA, Truwit CL. Intraoperative MR-guided neurosurgery.  Journal of Magnetic Resonance Imaging. 2008;  27 368-375
  • 66 Gasser T, Ganslandt O, Sandalcioglu E. et al . Intraoperative functional MRI: implementation and preliminary experience.  NeuroImage. 2005;  26 685-693
  • 67 Roux FE, Ibarrola D, Tremoulet M. et al . Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system.  Neurosurgery. 2001;  49 1145-1156
  • 68 Duffau H. Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping.  Journal of Neurology, Neurosurgery, and Psychiatry. 2001;  70 506-513
  • 69 Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications.  Journal of Clinical Neuroscience. 2006;  13 885-897
  • 70 Nimsky C, Ganslandt O, Buchfelder M. et al . Intraoperative visualization for resection of glioma: the role of functional neuronavigation and intraoperative 1.5 T MRI.  Neurological Research. 2006;  28 482-487
  • 71 Nimsky C, Ganslandt O, Merhof D. et al . Intraoperative visualization of the pyrmidal tract by diffusion-tensor-imaging-based fiber tracking.  NeuroImage. 2006;  30 1219-1229
  • 72 Coenen VA, Krings T, Mayfrank L. et al . Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note.  Neurosurgery. 2001;  49 86-92

Korrespondenzadresse

Dr. N. Weiskopf

Wellcome Trust Centre for Neuroimaging

UCL Institute of Neurology

University College London

12 Queen Square

London WC1N 3BG

United Kingdom

Email: n.weiskopf@fil.ion.ucl.ac.uk