Semin Musculoskelet Radiol 2010; 14(1): 003-013
DOI: 10.1055/s-0030-1248701
© Thieme Medical Publishers

The Evolution of Whole-Body Imaging

Deirdre E. Moran1 , Eric J. Heffernan1
  • 1Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
Further Information

Publication History

Publication Date:
12 March 2010 (online)

ABSTRACT

This article reviews the evolution of whole-body imaging, discussing the history and development of radiography, nuclear medicine, computed tomography (CT), positron emission tomography (PET), combined PET-CT, and magnetic resonance imaging. The obstacles hindering progress toward whole-body imaging using each of these modalities, and the technical advances that were developed to overcome them, are reviewed. The effectiveness and the limitations of whole-body imaging with each of these techniques are also briefly discussed.

REFERENCES

  • 1 DiSantis D J. Early American radiology: the pioneer years.  AJR Am J Roentgenol. 1986;  147(4) 850-853
  • 2 Roentgen W C. On a new kind of rays.  Nature. 1896;  53 274-276
  • 3 Renner J B. Conventional radiography in musculoskeletal imaging.  Radiol Clin North Am. 2009;  47(3) 357-372
  • 4 Brodsky A, Kathren R L. Historical development of radiation safety practices in radiology.  Radiographics. 1989;  9(6) 1267-1275
  • 5 Grigg E RN. The Trail of the Invisible Light. Springfield, IL; Thomas 1965
  • 6 Feldman A. A sketch of the technical history of radiology from 1896 to 1920.  Radiographics. 1989;  9(6) 1113-1128
  • 7 Rollins W. X-light kills.  Boston Med Surg J. 1901;  144 173
  • 8 Krohmer J S. Radiography and fluoroscopy, 1920 to the present.  Radiographics. 1989;  9(6) 1129-1153
  • 9 Pfahler G E. The roentgen diagnosis of metastatic malignant disease of bone, with special reference to the spinal column.  AJR Am J Roentgenol. 1917;  4 114-122
  • 10 Evans W A. Multiple myeloma of bone.  AJR Am J Roentgenol. 1919;  6 646-649
  • 11 Poppel M H, Lawrence L R, Jacobson H G, Stein J. Skeletal tuberculosis: a roentgenographic survey with reconsideration of diagnostic criteria.  Am J Roentgenol Radium Ther Nucl Med. 1953;  70(6) 936-963
  • 12 Roberts J G, Gravelle I H, Baum M, Bligh A S, Leach K G, Hughes L E. Evaluation of radiography and isotopic scintigraphy for detecting skeletal metastases in breast cancer.  Lancet. 1976;  1(7953) 237-239
  • 13 Horger M, Claussen C D, Bross-Bach U et al.. Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography.  Eur J Radiol. 2005;  54(2) 289-297
  • 14 Schmidt G P, Reiser M F, Baur-Melnyk A. Whole-body imaging of the musculoskeletal system: the value of MR imaging.  Skeletal Radiol. 2007;  36(12) 1109-1119
  • 15 Schmidt G P, Reiser M F, Baur-Melnyk A. Whole-body imaging of bone marrow.  Semin Musculoskelet Radiol. 2009;  13(2) 120-133
  • 16 Graham L S, Kereiakes J G, Harris C, Cohen M B. Nuclear medicine from Becquerel to the present.  Radiographics. 1989;  9(6) 1189-1202
  • 17 Joliot F, Curie I. Artificial production of a new kind of radioelement.  Nature. 1934;  133 201-202
  • 18 Ram P C, Fordham E W. An historical survey of bone scanning.  Semin Nucl Med. 1979;  9(3) 190-196
  • 19 Blum T. Osteomyelitis of the mandible and maxilla.  J Am Dent Assoc. 1924;  11 802-805
  • 20 Chiewitz O, Hevesy G. Radioactive indicators in the study of phosphorus metabolism in rats.  Nature. 1935;  136 754-755
  • 21 Edwards C L. Tumor-localizing radionuclides in retrospect and prospect.  Semin Nucl Med. 1979;  9(3) 186-189
  • 22 Blahd W H. History of external counting procedures.  Semin Nucl Med. 1979;  9(3) 159-163
  • 23 Cooke M BD, Clayton G D, Kaplan E. Scanning scintillation camera with data storage and processing capacity.  J Nucl Med. 1970;  11 309-310
  • 24 Cooke M BD, Kaplan E. Whole-body imaging and count profiling with a modified Anger camera. I. Principles and application.  J Nucl Med. 1972;  13(12) 899-902
  • 25 Lee V W, Sano R, Freedman G. Whole-body gamma camera imaging using a moving table accessory.  J Nucl Med. 1973;  14(11) 830-833
  • 26 Palestro C J, Love C, Schneider R. The evolution of nuclear medicine and the musculoskeletal system.  Radiol Clin North Am. 2009;  47(3) 505-532
  • 27 DeNardo G L, Volpe J A. Detection of bone lesions with the strontium-85 scintiscan.  J Nucl Med. 1966;  7(3) 219-236
  • 28 Subramanian G, McAfee J G. A new complex of 99mTc for skeletal imaging.  Radiology. 1971;  99(1) 192-196
  • 29 Hendee W R. Cross sectional medical imaging: a history.  Radiographics. 1989;  9(6) 1155-1180
  • 30 Curry T S, Dowdey J E, Murry R C. Christiensen's Physics of Diagnostic Radiology. 4th ed. Media, PA; Lippincott Williams and Wilkins 1990
  • 31 Cormack A M. Reconstruction of densities from their projections, with applications in radiological physics.  Phys Med Biol. 1973;  18(2) 195-207
  • 32 Kalender W A, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation.  Radiology. 1990;  176(1) 181-183
  • 33 Brant-Zawadzki M N. The role of computed tomography in screening for cancer.  Eur Radiol. 2005;  15(suppl 4) D52-D54
  • 34 Brenner D J, Elliston C D. Estimated radiation risks potentially associated with full-body CT screening.  Radiology. 2004;  232(3) 735-738
  • 35 Beinfeld M T, Wittenberg E, Gazelle G S. Cost-effectiveness of whole-body CT screening.  Radiology. 2005;  234(2) 415-422
  • 36 Brenner D J, Hall E J. Computed tomography—an increasing source of radiation exposure.  N Engl J Med. 2007;  357(22) 2277-2284
  • 37 Gleeson T G, Moriarty J, Shortt C P et al.. Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI).  Skeletal Radiol. 2009;  38(3) 225-236
  • 38 Walker R EA, Eustace S J. Whole-body magnetic resonance imaging: techniques, clinical indications, and future applications.  Semin Musculoskelet Radiol. 2001;  5(1) 5-20
  • 39 Nakamoto Y, Osman M, Wahl R L. Prevalence and patterns of bone metastases detected with positron emission tomography using F-18 FDG.  Clin Nucl Med. 2003;  28(4) 302-307
  • 40 Krishnamurthy G T, Tubis M, Hiss J, Blahd W H. Distribution pattern of metastatic bone disease.  JAMA. 1977;  237 2504-2506
  • 41 Sweet W H. The uses of nuclear disintegration in the diagnosis and treatment of brain tumor.  N Engl J Med. 1951;  245(23) 875-878
  • 42 Ter-Pogossian M M, Phelps M E, Hoffman E J, Mullani N A. A positron-emission transaxial tomograph for nuclear imaging (PETT).  Radiology. 1975;  114(1) 89-98
  • 43 Gallagher B M, Ansari A, Atkins H et al.. Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals.  J Nucl Med. 1977;  18(10) 990-996
  • 44 Hwang S, Panicek D M. The evolution of musculoskeletal tumor imaging.  Radiol Clin North Am. 2009;  47 435-453
  • 45 Poeppel T D, Krause B J, Heusner T A, Boy C, Bockisch A, Antoch G. PET/CT for the staging and follow-up of patients with malignancies.  Eur J Radiol. 2009;  70(3) 382-392
  • 46 Schaffler G J, Groell R, Schoellnast H et al.. Digital image fusion of CT and PET data sets—clinical value in abdominal/pelvic malignancies.  J Comput Assist Tomogr. 2000;  24(4) 644-647
  • 47 Schöder H, Gönen M. Screening for cancer with PET and PET/CT: potential and limitations.  J Nucl Med. 2007;  48(suppl 1) 4S-18S
  • 48 Domingues R C, Carneiro M P, Lopes F CR, Domingues R C, da Fonseca L MB, Gasparetto E L. Whole-body MRI and FDG PET fused images for evaluation of patients with cancer.  AJR Am J Roentgenol. 2009;  192(4) 1012-1020
  • 49 Farsad M, Schiavina R, Castellucci P et al.. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis.  J Nucl Med. 2005;  46(10) 1642-1649
  • 50 Damadian R V. Tumor detection by nuclear magnetic resonance.  Science. 1971;  171(976) 1151-1153
  • 51 Macovski A. MRI: a charmed past and an exciting future.  J Magn Reson Imaging. 2009;  30(5) 919-923
  • 52 Lauterbur P C. Image formation by induced local interactions: example employing nuclear magnetic resonance.  Nature. 1973;  242 190-191
  • 53 Mansfield P, Maudsley A A. Medical imaging by NMR.  Br J Radiol. 1977;  50(591) 188-194
  • 54 Johnson K M, Leavitt G D, Kayser H W. Total-body MR imaging in as little as 18 seconds.  Radiology. 1997;  202(1) 262-267
  • 55 Brauck K, Zenge M O, Vogt F M et al.. Feasibility of whole-body MR with T2- and T1-weighted real-time steady-state free precession sequences during continuous table movement to depict metastases.  Radiology. 2008;  246(3) 910-916
  • 56 Lauenstein T C, Goehde S C, Herborn C U et al.. Whole-body MR imaging: evaluation of patients for metastases.  Radiology. 2004;  233(1) 139-148
  • 57 Walker R, Kessar P, Blanchard R et al.. Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience.  J Magn Reson Imaging. 2000;  11(4) 343-350
  • 58 Flickinger F W, Sanal S M. Bone marrow MRI: techniques and accuracy for detecting breast cancer metastases.  Magn Reson Imaging. 1994;  12(6) 829-835
  • 59 Vande Berg B C, Lecouvet F E, Galant C, Simoni P, Malghem J. Normal variants of the bone marrow at MR imaging of the spine.  Semin Musculoskelet Radiol. 2009;  13(2) 87-96
  • 60 Steinborn M M, Heuck A F, Tiling R, Bruegel M, Gauger L, Reiser M F. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system.  J Comput Assist Tomogr. 1999;  23(1) 123-129

Eric J HeffernanM.B. 

Department of Radiology, St. Vincent's University Hospital

Elm Park, Dublin 4, Ireland

Email: ejheffernan@eircom.net

    >