Semin Musculoskelet Radiol 2010; 14(1): 086-094
DOI: 10.1055/s-0030-1248708
© Thieme Medical Publishers

Targeted Contrast Agents—an Adjunct to Whole-Body Imaging: Current Concepts

Paul Foran1 , Ferdia Bolster1 , Ian Crosbie1 , Peter MacMahon2 , Richard O'Kennedy3 , Stephen J. Eustace1 , 2 , 4
  • 1Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland
  • 2Department of Radiology, Cappagh National Orthopaedic Hospital, Finglas, Dublin, Ireland
  • 3School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
  • 4Department of Radiology, University College Dublin, Dublin, Ireland
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. März 2010 (online)

ABSTRACT

This article reviews the potential use of a combination of whole-body imaging and targeted contrast agents in improving diagnostics, with a particular focus on oncology imaging. It looks at the rationale for nanoparticles and their development as targeted contrast agents. It subsequently describes many of the advances made thus far in developing tissue-specific contrast agents capable of targeting tumors that combined with whole-body imaging may enable superior cancer detection and characterization.

REFERENCES

  • 1 Johnston C, Brennan S, Ford S, Eustace S. Whole body MR imaging: applications in oncology.  Eur J Surg Oncol. 2006;  32 239-246
  • 2 Mulder W JM, Strijkers G J, Griffioen A W et al.. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets.  Bioconjug Chem. 2004;  15(4) 799-806
  • 3 Aime S, Dastrù W, Crich S G, Gianolio E, Mainero V. Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd(III) complexes.  Biopolymers. 2002;  66(6) 419-428
  • 4 Caravan P, Ellison J J, McMurry T J, Lauffer R B. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications.  Chem Rev. 1999;  99(9) 2293-2352
  • 5 Weinmann H J, Ebert W, Misselwitz B, Schmitt-Willich H. Tissue-specific MR contrast agents.  Eur J Radiol. 2003;  46(1) 33-44
  • 6 Gupta H, Weissleder R. Targeted contrast agents in MR imaging.  Magn Reson Imaging Clin N Am. 1996;  4(1) 171-184
  • 7 Strijkers G J, Mulder W J, van Heeswijk R B et al.. Relaxivity of liposomal paramagnetic MRI contrast agents.  MAGMA. 2005;  18(4) 186-192
  • 8 Gløgård C, Stensrud G, Hovland R, Fossheim S L, Klaveness J. Liposomes as carriers of amphiphilic gadolinium chelates: the effect of membrane composition on incorporation efficacy and in vitro relaxivity.  Int J Pharm. 2002;  233(1-2) 131-140
  • 9 Huang S K, Mayhew E, Gilani S, Lasic D D, Martin F J, Papahadjopoulos D. Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma.  Cancer Res. 1992;  52(24) 6774-6781
  • 10 Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS.  J Control Release. 2001;  74 47-61
  • 11 Ishida O, Maruyama K, Tanahashi H et al.. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo.  Pharm Res. 2001;  18(7) 1042-1048
  • 12 Seymour L W. Passive tumor targeting of soluble macromolecules and drug conjugates.  Crit Rev Ther Drug Carrier Syst. 1992;  9(2) 135-187
  • 13 Kairemo K, Erba P, Bergstrom K, Pauwels E KJ. Nanoparticles in cancer.  Curr Radiopharm. 2008;  1 30-36
  • 14 Park J W, Hong K, Kirpotin D B et al.. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery.  Clin Cancer Res. 2002;  8(4) 1172-1181
  • 15 Yang Z, Yang M, Xiahou G, Peng J, Zhang J J. Targeted delivery of insulin-modified immunoliposomes in vivo.  Liposome Res. 2009;  1-6
  • 16 Chang D K, Lin C T, Wu C H, Wu H C. A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer.  PLoS One. 2009;  4(1) e4171
  • 17 Sihorkar V, Vyas S PJ. Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization.  J Pharm Pharmaceut Sci. 2001;  4(2) 138-158
  • 18 Wang X, Yang L, Chen Z G, Shin D M. Application of nanotechnology in cancer therapy and imaging.  CA Cancer J Clin. 2008;  58 97-110
  • 19 Park J W, Hong K, Kirpotin D B, Papahadjopoulos D, Benz C C. Immunoliposomes for cancer treatment.  Adv Pharmacol. 1997;  40 399-435
  • 20 Roth P, Hammer C, Piguet A C, Ledermann M, Dufour J F, Waelti E. Effects on hepatocellular carcinoma of doxorubicin-loaded immunoliposomes designed to target VEGFR-2.  J Drug Target. 2007;  15(9) 623-631
  • 21 Sokolov K, Aaron J, Kumar S et al.. Molecular imaging of carcinogenesis with immuno-targeted nanoparticles.  Conf Proc IEEE Eng Med Biol Soc. 2004;  7 5292-5295
  • 22 Hilgenbrink A R, Low P SJ. Folate receptor-mediated drug targeting: from therapeutics to diagnostics.  J Pharm Sci. 2005;  94 2135-2146
  • 23 Yoo H S, Park T GJ. Folate receptor targeted biodegradable polymeric doxorubicin micelles.  J Control Release. 2004;  96 276-283
  • 24 Sahoo S K, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer.  Int J Cancer. 2004;  112(2) 335-340
  • 25 Iakoubov L Z, Torchilin V P. A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice.  Oncol Res. 1997;  9(8) 439-446
  • 26 Erdogan S, Roby A, Sawant R, Hurley J, Torchilin V PJ. Gadolinium-loaded polychelating polymer-containing cancer cell-specific immunoliposomes.  Liposome Res. 2006;  16 45-55
  • 27 Erdogan S, Medarova Z O, Roby A, Moore A, Torchilin V PJ. Enhanced tumor MR imaging with gadolinium-loaded polychelating polymer-containing tumor-targeted liposomes.  J Magn Reson Imaging. 2008;  27(3) 574-580
  • 28 Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles.  Biosci Bioeng. 2005;  100(1) 1-11
  • 29 Suzuki M, Honda H, Kobayashi T, Wakabayashi T, Yoshida J, Takahashi M. Development of a target-directed magnetic resonance contrast agent using monoclonal antibody-conjugated magnetic particles.  Noshuyo Byori. 1996;  13 127-132
  • 30 Baio G, Fabbi M, Salvi S et al.. Two-step in vivo tumor targeting by biotin-conjugated antibodies and superparamagnetic nanoparticles assessed by magnetic resonance imaging at 1.5 T.  Mol Imaging Biol. 2009; 
  • 31 Artemov D, Mori N, Okollie B, Bhujwalla Z M. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles.  Magn Reson Med. 2003;  49(3) 403-408
  • 32 Artemov D, Mori N, Ravi R, Bhujwalla Z M. Magnetic resonance molecular imaging of the HER-2/neu receptor.  Cancer Res. 2003;  63(11) 2723-2727
  • 33 Kramer-Marek G, Kiesewetter D O, Martiniova L, Jagoda E, Lee S B, Capala J. [18F]FBEM-Z(HER2:342)-Affibody molecule—a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography.  Eur J Nucl Med Mol Imaging. 2008;  35(5) 1008-1018
  • 34 Kramer-Marek G, Kiesewetter D O, Capala J J. Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and (18)F-labeled affibody molecules.  J Nucl Med. 2009;  50(7) 1131-1139
  • 35 Sundaresan G, Yazaki P J, Shively J E et al.. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice.  J Nucl Med. 2003;  44(12) 1962-1969
  • 36 Neufeld G, Cohen T, Gitay-Goren H et al.. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants.  Cancer Metastasis Rev. 1996;  15(2) 153-158
  • 37 Kerbel R S. Tumor angiogenesis: past, present and the near future.  Carcinogenesis. 2000;  21(3) 505-515
  • 38 Collingridge D R, Carroll V A, Glaser M et al.. The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography.  Cancer Res. 2002;  62(20) 5912-5919

Paul ForanM.B. 

Department of Radiology, Mater Misericordiae University Hospital

Eccles St., Dublin 7, Ireland

eMail: paulforan2006@gmail.com

    >