Planta Med 2010; 76(15): 1778-1783
DOI: 10.1055/s-0030-1249930
Biochemistry, Molecular Biology and Biotechnology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

The Molecular Cloning of Dihydroartemisinic Aldehyde Reductase and its Implication in Artemisinin Biosynthesis in Artemisia annua

Anna-Margareta Rydén1 , 2 , 3 , Carolien Ruyter-Spira2 , Wim J. Quax1 , Hiroyuki Osada4 , Toshiya Muranaka4 , Oliver Kayser5 , Harro Bouwmeester6
  • 1Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
  • 2Plant Research International, Wageningen, The Netherlands
  • 3Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
  • 4Chemical Biology Department, Antibiotics Laboratory, Advanced Science Institute, RIKEN, Saitama, Japan
  • 5Technical University Dortmund, Technical Biochemistry, Dortmund, Germany
  • 6Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
Further Information

Publication History

received October 29, 2009 revised March 10, 2010

accepted April 9, 2010

Publication Date:
19 May 2010 (online)

Abstract

A key point in the biosynthesis of the antimalarial drug artemisinin is the formation of dihydroartemisinic aldehyde which represents the key difference between chemotype specific pathways. This key intermediate is the substrate for several competing enzymes, some of which increase the metabolic flux towards artemisinin, and some of which – as we show in the present study – may have a negative impact on artemisinin production. In an effort to understand the biosynthetic network of artemisinin biosynthesis, extracts of A. annua flowers were investigated and found to contain an enzyme activity competing in a negative sense with artemisinin biosynthesis. The enzyme Red1 is a broad substrate oxidoreductase belonging to the short chain dehydrogenase/reductase family with high affinity for dihydroartemisinic aldehyde and valuable monoterpenoids. Spatial and temporal analysis of cDNA revealed Red1 to be trichome specific. The relevance of Red1 to artemisinin biosynthesis is discussed.

References

  • 1 Rydén A-M, Kayser O. Chemistry, biosynthesis and biological activity of artemisinin and related natural peroxides. Gupta RR Topics in heterocyclic chemistry. Bioactive heterocycles III. Berlin; Springer 2007: 1-31
  • 2 Bertea C M, Freije J R, van der Woude H, Verstappen F W, Perk L, Marquez V, De Kraker J W, Posthumus M A, Jansen B J, de Groot A, Franssen M C, Bouwmeester H J. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua.  Planta Med. 2005;  71 40-47
  • 3 Wallaart T E, van Uden W, Lubberink H G, Woerdenbag H J, Pras N, Quax W J. Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin.  J Nat Prod. 1999;  62 430-433
  • 4 Wallaart T E, Pras N, Quax W J. Isolation and identification of dihydroartemisinic acid hydroperoxide from Artemisia annua: a novel biosynthetic precursor of artemisinin.  J Nat Prod. 1999;  62 1160-1162
  • 5 Teoh K H, Polichuk D R, Reed D W, Nowak G, Covello P S. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin.  FEBS Lett. 2006;  580 1411-1416
  • 6 Wallaart T E, Bouwmeester H J, Hille J, Poppinga L, Maijers N C. Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin.  Planta. 2001;  212 460-465
  • 7 Mercke P, Bengtsson M, Bouwmeester H J, Posthumus M A, Brodelius P E. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L.  Arch Biochem Biophys. 2000;  381 173-180
  • 8 Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang M C, Withers S T, Shiba Y, Sarpong R, Keasling J D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast.  Nature. 2006;  440 940-943
  • 9 Zhang Y, Teoh K H, Reed D W, Maes L, Goossens A, Olson D J, Ross A R, Covello P S. The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua.  J Biol Chem. 2008;  283 21501-21508
  • 10 Bouwmeester H J, Wallaart T E, Janssen M H, van Loo B, Jansen B J, Posthumus M A, Schmidt C O, De Kraker J W, Konig W A, Franssen M C. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis.  Phytochemistry. 1999;  52 843-854
  • 11 Bertea C M, Voster A, Verstappen F W, Maffei M, Beekwilder J, Bouwmeester H J. Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library.  Arch Biochem Biophys. 2006;  448 3-12
  • 12 Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0.  Bioinformatics. 2007;  23 2947-2948
  • 13 Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool.  J Mol Biol. 1990;  215 403-410
  • 14 Aharoni A, Jongsma M A, Bouwmeester H J. Volatile science? Metabolic engineering of terpenoids in plants.  Trends Plant Sci. 2005;  10 594-602
  • 15 Kim S H, Chang Y J, Kim S U. Tissue specificity and developmental pattern of amorpha-4,11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, Arabidopsis thaliana.  Planta Med. 2008;  74 188-193
  • 16 Wallaart T E, Pras N, Beekman A C, Quax W J. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes.  Planta Med. 2000;  66 57-62
  • 17 Davis E M, Ringer K L, McConkey M E, Croteau R. Monoterpene metabolism. Cloning, expression, and characterization of menthone reductases from peppermint.  Plant Physiol. 2005;  137 873-881
  • 18 Geissler R, Brandt W, Ziegler J. Molecular modeling and site-directed mutagenesis reveal the benzylisoquinoline binding site of the short-chain dehydrogenase/reductase salutaridine reductase.  Plant Physiol. 2007;  143 1493-1503
  • 19 Kallberg Y, Oppermann U, Jornvall H, Persson B. Short-chain dehydrogenases/reductases (SDRs).  Eur J Biochem. 2002;  269 4409-4417
  • 20 Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jornvall H. Short-chain dehydrogenases/reductases (SDR): the 2002 update.  Chem Biol Interact. 2003;  143–144 247-253
  • 21 Persson B, Kallberg Y, Bray J E, Bruford E, Dellaporta S L, Favia A D, Duarte R G, Jornvall H, Kavanagh K L, Kedishvili N, Kisiela M, Maser E, Mindnich R, Orchard S, Penning T M, Thornton J M, Adamski J, Oppermann U. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative.  Chem Biol Interact. 2009;  178 94-98
  • 22 Persson B, Kallberg Y, Oppermann U, Jornvall H. Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs).  Chem Biol Interact. 2003;  143–144 271-278
  • 23 Teoh K H, Reed D W, Polichuk D R, Covello P S. Nucleotide sequences encoding enzymes in biosynthesis of dihydroartemisinic acid. CA Patent 20090265804. 2007
  • 24 Rydén A-M, Ruyter-Spira C, Litjens R, Takahashi S, Quax W J, Osada H, Bouwmeester H J, Kayser O. Molecular cloning and characterization of a broad substrate dehydrogenase from Artemisia annua.  Plant Cell Physiol. ;  , [in press]
  • 25 Covello P S, Teoh K H, Polichuk D R, Reed D W, Nowak G. Functional genomics and the biosynthesis of artemisinin.  Phytochemistry. 2007;  68 1864-1871
  • 26 Zeng Q, Qiu F, Yuan L. Production of artemisinin by genetically-modified microbes.  Biotechnol Lett. 2008;  30 581-592
  • 27 Picaud S, Mercke P, He X, Sterner O, Brodelius M, Cane D E, Brodelius P E. Amorpha-4,11-diene synthase: mechanism and stereochemistry of the enzymatic cyclization of farnesyl diphosphate.  Arch Biochem Biophys. 2006;  448 150-155
  • 28 Ro D K, Ouellet M, Paradise E M, Burd H, Eng D, Paddon C J, Newman J D, Keasling J D. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid.  BMC Biotechnol. 2008;  8 83
  • 29 Brown G D, Liang G Y, Sy L K. Terpenoids from the seeds of Artemisia annua.  Phytochemistry. 2003;  64 303-323
  • 30 Brown G D, Sy L K. In vivo transformations of dihydroartemisinic acid in Artemisia annua plants.  Tetrahedron. 2004;  60 1139-1159
  • 31 Rydén A-M, Ruyter-Spira C, Van den End F, Verstappen F, Quax W J, Osada H, Kayser O, Bouwmeester H J. Oxygen dependent biosynthesis of artemisinin precursors in yeast.  J Biotechnol. ;  , [in press]
  • 32 Noge K, Kato M, Mori N, Kataoka M, Tanaka C, Yamasue Y, Nishida R, Kuwahara Y. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae).  FEBS J. 2008;  275 2807-2817
  • 33 Davis E M, Ringer K L, McConkey M E, Croteau R. Monoterpene metabolism. Cloning, expression, and characterization of menthone reductases from peppermint.  Plant Physiol. 2005;  137 873-881

Prof. Dr. Oliver Kayser

Technische Universität Dortmund
Fakultät Bio- und Chemieingenieurwesen
AG Technische Biochemie

Gebäude G3, Büro 5.10 Emil-Figge-Str. 68

44227 Dortmund

Germany

Phone: + 49 (0) 23 17 55 74 87

Fax: +49 (0) 23 17 55 74 89

Email: oliver.kayser@bci.tu-dortmund.de

    >