Am J Perinatol 2011; 28(4): 305-314
DOI: 10.1055/s-0030-1268715
© Thieme Medical Publishers

Bedside Lung Mechanics Predict Survival in Hypoplastic Lung Disease

Abdul Haleem1 , Muhammad T. Zia1 , Ravi Mishra1 , Lance A. Parton1 , Gustavo Stringel2 , Edmund F. La Gamma1
  • 1Division of Newborn Medicine, Department of Pediatrics, Maria Fareri Children's Hospital, Westchester Medical Center, New York Medical College, Valhalla, New York
  • 2Division of Pediatric Surgery, Department of Surgery, Maria Fareri Children's Hospital, Westchester Medical Center, New York Medical College, Valhalla, New York
Further Information

Publication History

Publication Date:
29 November 2010 (online)

ABSTRACT

Newer bedside pulmonary mechanics using conventional ventilators allow for continuous serial determinations of tidal volume (VT). We sought to determine whether the degree of pulmonary hypoplasia could be measured using bedside pulmonary graphics and whether survival could be predicted in potential extracorporeal membrane oxygenation (ECMO) candidates. Data on all neonates considered for or treated with ECMO at our center between April 2000 and March 2005 were collected. The “maximal bedside VT” was measured daily at the peak pressure where “beaking” began with a peak end expiratory pressure of 4 cm H2O. Twenty-two patients were reviewed: eight ECMO plus fourteen similar patients in whom the threshold for ECMO intervention was not achieved. Independent of need for ECMO, any patient with VT of < 3 mL/kg or < 0.2 mL/cm length died (n = 4). All other measures of lung capacity or blood gas assessments were less valuable than VT in predicting survival. We conclude that bedside VT can be easily measured and that values < 3 mL/kg or < 0.2 mL/cm length demarcate severe lung hypoplasia, which in our patient population was incompatible with survival. We speculate that bedside VT may assist in evaluating the utility of ECMO.

REFERENCES

  • 1 Somme S, Liu D C. New trends in extracorporeal membrane oxygenation in newborn pulmonary diseases.  Artif Organs. 2001;  25 633-637
  • 2 Roy B J, Rycus P, Conrad S A, Clark R H. The changing demographics of neonatal extracorporeal membrane oxygenation patients reported to the Extracorporeal Life Support Organization (ELSO) Registry.  Pediatrics. 2000;  106 1334-1338
  • 3 Hui T T, Danielson P D, Anderson K D, Stein J E. The impact of changing neonatal respiratory management on extracorporeal membrane oxygenation utilization.  J Pediatr Surg. 2002;  37 703-705
  • 4 Conrad S A, Rycus P T, Dalton H. Extracorporeal Life Support Registry Report 2004.  ASAIO J. 2005;  51 4-10
  • 5 Inwald D, Brown K, Gensini F, Malone M, Goldman A. Open lung biopsy in neonatal and paediatric patients referred for extracorporeal membrane oxygenation (ECMO).  Thorax. 2004;  59 328-333
  • 6 Rasheed A, Tindall S, Cueny D L, Klein M D, Delaney-Black V. Neurodevelopmental outcome after congenital diaphragmatic hernia: Extracorporeal membrane oxygenation before and after surgery.  J Pediatr Surg. 2001;  36 539-544
  • 7 Stege G, Fenton A, Jaffray B. Nihilism in the 1990s: the true mortality of congenital diaphragmatic hernia.  Pediatrics. 2003;  112 (3 Pt 1) 532-535
  • 8 Langham Jr M R, Kays D W, Ledbetter D J, Frentzen B, Sanford L L, Richards D S. Congenital diaphragmatic hernia. Epidemiology and outcome.  Clin Perinatol. 1996;  23 671-688
  • 9 Bohn D. Congenital diaphragmatic hernia.  Am J Respir Crit Care Med. 2002;  166 911-915
  • 10 Hansell D R. Extracorporeal membrane oxygenation for perinatal and pediatric patients.  Respir Care. 2003;  48 352-362 discussion 363-366
  • 11 Boloker J, Bateman D A, Wung J T, Stolar C J. Congenital diaphragmatic hernia in 120 infants treated consecutively with permissive hypercapnea/spontaneous respiration/elective repair.  J Pediatr Surg. 2002;  37 357-366
  • 12 Bohn D J, James I, Filler R M et al.. The relationship between PaCO2 and ventilation parameters in predicting survival in congenital diaphragmatic hernia.  J Pediatr Surg. 1984;  19 666-671
  • 13 Bohn D, Tamura M, Perrin D, Barker G, Rabinovitch M. Ventilatory predictors of pulmonary hypoplasia in congenital diaphragmatic hernia, confirmed by morphologic assessment.  J Pediatr. 1987;  111 423-431
  • 14 Metkus A P, Filly R A, Stringer M D, Harrison M R, Adzick N S. Sonographic predictors of survival in fetal diaphragmatic hernia.  J Pediatr Surg. 1996;  31 148-151 discussion 151-152
  • 15 Kilian A K, Schaible T, Hofmann V, Brade J, Neff K W, Büsing K A. Congenital diaphragmatic hernia: predictive value of MRI relative lung-to-head ratio compared with MRI fetal lung volume and sonographic lung-to-head ratio.  AJR Am J Roentgenol. 2009;  192 153-158
  • 16 Antunes M J, Greenspan J S, Cullen J A, Holt W J, Baumgart S, Spitzer A R. Prognosis with preoperative pulmonary function and lung volume assessment in infants with congenital diaphragmatic hernia.  Pediatrics. 1995;  96 1117-1122
  • 17 Tracy Jr T F, Bailey P V, Sadiq F, Noguchi A, Silen M L, Weber T R. Predictive capabilities of preoperative and postoperative pulmonary function tests in delayed repair of congenital diaphragmatic hernia.  J Pediatr Surg. 1994;  29 265-269 discussion 269-270
  • 18 Boloker J, Bateman D A, Wung J T, Stolar C JH. Congenital diaphragmatic hernia in 120 infants treated consecutively with permissive hypercapnea/spontaneous respiration/elective repair.  J Pediatr Surg. 2002;  37 357-366
  • 19 Bagolan P, Casaccia G, Crescenzi F, Nahom A, Trucchi A, Giorlandino C. Impact of a current treatment protocol on outcome of high-risk congenital diaphragmatic hernia.  J Pediatr Surg. 2004;  39 313-318 discussion 313-318
  • 20 Masumoto K, Teshiba R, Esumi G et al.. Improvement in the outcome of patients with antenatally diagnosed congenital diaphragmatic hernia using gentle ventilation and circulatory stabilization.  Pediatr Surg Int. 2009;  25 487-492
  • 21 Weber T R, Kountzman B, Dillon P A, Silen M L. Improved survival in congenital diaphragmatic hernia with evolving therapeutic strategies.  Arch Surg. 1998;  133 498-502 discussion 502-503
  • 22 Brumberg H, La Gamma E F. New perspectives on nutrition enhance outcomes for premature infants.  Pediatr Ann. 2003;  32 617-625
  • 23 Mishra R, Golombek S G, Ramirez-Tolentino S R, Das S, La Gamma E F. Low-birth-weight neonates exhibit a physiological set-point to regulate CO2: an untapped potential to minimize volutrauma-associated lung injury.  Am J Perinatol. 2003;  20 453-463
  • 24 Amato M B, Barbas C S, Medeiros D M et al.. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome.  N Engl J Med. 1998;  338 347-354
  • 25 Haitsma J J, Lachmann R A, Lachmann B. Open lung in ARDS.  Acta Pharmacol Sin. 2003;  24 1304-1307
  • 26 Thibeault D W, Olsen S L, Truog W E, Hubbell M M. Pre-ECMO predictors of nonsurvival in congenital diaphragmatic hernia.  J Perinatol. 2002;  22 682-683 author reply-684
  • 27 Kavvadia V, Greenough A, Laubscher B, Dimitriou G, Davenport M, Nicolaides K H. Perioperative assessment of respiratory compliance and lung volume in infants with congenital diaphragmatic hernia: prediction of outcome.  J Pediatr Surg. 1997;  32 1665-1669
  • 28 Sakai H, Tamura M, Hosokawa Y, Bryan A C, Barker G A, Bohn D J. Effect of surgical repair on respiratory mechanics in congenital diaphragmatic hernia.  J Pediatr. 1987;  111 432-438
  • 29 Bailey P V, Connors R H, Tracy Jr T F, Stephens C, Pennington D G, Weber T R. A critical analysis of extracorporeal membrane oxygenation for congenital diaphragmatic hernia.  Surgery. 1989;  106 611-615 discussion-616
  • 30 Ackerman K G, Pober B R. Congenital diaphragmatic hernia and pulmonary hypoplasia: new insights from developmental biology and genetics.  Am J Med Genet C Semin Med Genet. 2007;  145C 105-108
  • 31 Jay P Y, Bielinska M, Erlich J M et al.. Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects.  Dev Biol. 2007;  301 602-614
  • 32 Geggel R L, Murphy J D, Langleben D, Crone R K, Vacanti J P, Reid L M. Congenital diaphragmatic hernia: arterial structural changes and persistent pulmonary hypertension after surgical repair.  J Pediatr. 1985;  107 457-464
  • 33 Petersen T H, Calle E A, Zhao L et al.. Tissue-engineered lungs for in vivo implantation.  Science. 2010;  329 538-541
  • 34 Ott H C, Clippinger B, Conrad C et al.. Regeneration and orthotopic transplantation of a bioartificial lung.  Nat Med. 2010;  16 927-933
  • 35 Suda K, Bigras J L, Bohn D, Hornberger L K, McCrindle B W. Echocardiographic predictors of outcome in newborns with congenital diaphragmatic hernia.  Pediatrics. 2000;  105 1106-1109
  • 36 Springer S C, Fleming D, Hulsey T C. A statistical model to predict nonsurvival in congenital diaphragmatic hernia.  J Perinatol. 2002;  22 263-267
  • 37 Verklan M T, Padhye N S. Heart rate variability as an indicator of outcome in congenital diaphragmatic hernia with and without ECMO support.  J Perinatol. 2004;  24 247-251
  • 38 Nakayama D K, Motoyama E K, Tagge E M. Effect of preoperative stabilization on respiratory system compliance and outcome in newborn infants with congenital diaphragmatic hernia.  J Pediatr. 1991;  118 793-799
  • 39 Cloutier R, Fournier L, Major D. Index of pulmonary expansion: a new method to estimate lung hypoplasia in congenital diaphragmatic hernia.  J Pediatr Surg. 1992;  27 456-458

Lance A PartonM.D. 

Division of Newborn Medicine, Department of Pediatrics, Maria Fareri Children's Hospital, Westchester Medical Center

New York Medical College, Valhalla, NY 10595

Email: Lance_Parton@nymc.edu

    >