J Knee Surg 2011; 24(3): 175-180
DOI: 10.1055/s-0031-1284728
ORIGINAL ARTICLE

© Thieme Medical Publishers

Comparison of ACL Fixation Devices Using Cadaveric Grafts

David C. Flanigan1 , Praveen Kanneganti2 , Daniel P. Quinn3 , Alan S. Litsky4
  • 1Sports Medicine Center and Department of Orthopaedics, The Ohio State University, Columbus, Ohio
  • 2College of Medicine, The Ohio State University, Columbus, Ohio
  • 3Department of Orthopaedics, The Ohio State University, Columbus, Ohio
  • 4Department of Orthopaedics and Biomedical Engineering, The Ohio State University, Columbus, Ohio
Further Information

Publication History

Publication Date:
01 August 2011 (online)

ABSTRACT

We evaluated two newer forms of femoral fixation of hamstring grafts for anterior cruciate ligament reconstruction, the Endobutton direct (Smith and Nephew, Andover, MA) and Femoral intrafix (Depuy Mitek, Raynham, MA), and compare them to devices that have been evaluated in the literature, the AXL Crosspin (Biomet, Warsaw, IN) and Biotransfix II (Arthrex, Naples, FL). Paired hamstring tendon allografts were fixed in the femoral tunnel of 24 cadaveric bovine knees (6 per group) according to each device's specifications. The free ends (tibial sides) were fixed to the materials testing machine via custom-made cryo-clamps. In Phase I, single load to failure and stiffness were evaluated, and in Phase II, peak displacement was evaluated while cyclic loading was performed over 1000 cycles. One-way analyses of variance were performed to test for differences between groups. There were no significant differences in failure load (p = 0.42) or stiffness (p = 0.39) between the fixation devices. There was also no significant difference in peak displacement measured during the cyclic loading phase (p = 0.32). Our findings suggest that the newer generation devices, Endobutton direct and Femoral intrafix, have similar strength in single load to failure and similar peak displacement during cyclic loading as compared with clinically proven Crosspin techniques. These newer devices, which are designed to accommodate for more anatomic femoral tunnel placement, may provide a reasonable alternative without compromising biomechanical properties.

REFERENCES

  • 1 Miyasaka K C, Daniel D M, Stone M L, Hirshman P. The incidence of knee ligament injuries in the general population.  Am J Knee Surg. 1991;  4 3-8
  • 2 Centers for Disease Control and Prevention .National Hospital Discharge Survey. http://www.cdc.gov/nchs/nhds.htm Accessed 12/29/10, 2010
  • 3 Bartlett R J, Clatworthy M G, Nguyen T N. Graft selection in reconstruction of the anterior cruciate ligament.  J Bone Joint Surg Br. 2001;  83 (5) 625-634
  • 4 Kartus J, Movin T, Karlsson J. Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts.  Arthroscopy. 2001;  17 (9) 971-980
  • 5 Beard D J, Anderson J L, Davies S, Price A J, Dodd C A. Hamstrings vs. patella tendon for anterior cruciate ligament reconstruction: a randomised controlled trial.  Knee. 2001;  8 (1) 45-50
  • 6 Brand Jr J, Weiler A, Caborn D N, Brown Jr C H, Johnson D L. Graft fixation in cruciate ligament reconstruction.  Am J Sports Med. 2000;  28 (5) 761-774
  • 7 Fu F H, Bennett C H, Lattermann C, Ma C B. Current trends in anterior cruciate ligament reconstruction. Part 1: Biology and biomechanics of reconstruction.  Am J Sports Med. 1999;  27 (6) 821-830
  • 8 Fu F H, Bennett C H, Ma C B, Menetrey J, Lattermann C. Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations.  Am J Sports Med. 2000;  28 (1) 124-130
  • 9 Cooper D E, Deng X H, Burstein A L, Warren R F. The strength of the central third patellar tendon graft. A biomechanical study.  Am J Sports Med. 1993;  21 (6) 818-823 discussion 823-824
  • 10 Rowden N J, Sher D, Rogers G J, Schindhelm K. Anterior cruciate ligament graft fixation. Initial comparison of patellar tendon and semitendinosus autografts in young fresh cadavers.  Am J Sports Med. 1997;  25 (4) 472-478
  • 11 Hamner D L, Brown Jr C H, Steiner M E, Hecker A T, Hayes W C. Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques.  J Bone Joint Surg Am. 1999;  81 (4) 549-557
  • 12 To J T, Howell S M, Hull M L. Contributions of femoral fixation methods to the stiffness of anterior cruciate ligament replacements at implantation.  Arthroscopy. 1999;  15 (4) 379-387
  • 13 Howell S M, Gittins M E, Gottlieb J E, Traina S M, Zoellner T M. The relationship between the angle of the tibial tunnel in the coronal plane and loss of flexion and anterior laxity after anterior cruciate ligament reconstruction.  Am J Sports Med. 2001;  29 (5) 567-574
  • 14 Gelber P E, Reina F, Torres R, Monllau J C. Effect of femoral tunnel length on the safety of anterior cruciate ligament graft fixation using cross-pin technique: a cadaveric study.  Am J Sports Med. 2010;  38 (9) 1877-1884
  • 15 Kääb M J, Gwynn I A, Nötzli H P. Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species.  J Anat. 1998;  193 (Pt 1) 23-34
  • 16 Flanigan D C, Harris J D, Brockmeier P M, Siston R A. The effects of lesion size and location on subchondral bone contact in experimental knee articular cartilage defects in a bovine model.  Arthroscopy. 2010;  26 (12) 1655-1661
  • 17 Milano G, Mulas P D, Ziranu F, Piras S, Manunta A, Fabbriciani C. Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis.  Arthroscopy. 2006;  22 (6) 660-668
  • 18 Kousa P, Järvinen T L, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site.  Am J Sports Med. 2003;  31 (2) 174-181
  • 19 Ahmad C S, Gardner T R, Groh M, Arnouk J, Levine W N. Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction.  Am J Sports Med. 2004;  32 (3) 635-640

David C FlaniganM.D. 

Sports Medicine Center, The Ohio State University

2050 Kenny Road, Suite 3300, Columbus, OH 43221

Email: flaniganOSUortho@gmail.com

    >