Subscribe to RSS
DOI: 10.1055/s-0031-1290656
A Transition-Metal-Free Cross-Coupling Reaction of Allylic Bromides with Aryl- and Vinylboronic Acids
Publication History
Publication Date:
28 March 2012 (online)
Abstract
A cross-coupling reaction between aryl- and vinylboronic acids and various allylic bromides proceeded without the use of a transition-metal catalyst to give the corresponding allylated products in moderate to good yields. The use of an inorganic base (KF or Cs2CO3) and a small amount of water is crucial in obtaining good performance in the present transition-metal-free reaction.
Key words
transition-metal-free - C-C bond formation - aryl- and vinylboronic acids
-
1a
Moreno-Mañas M.Pajuelo F.Pleixats R. J. Org. Chem. 1995, 60: 2396 -
1b
Cortes J.Moreno-Mañas M.Pleixats R. Eur. J. Org. Chem. 2000, 239 -
1c
Moreno-Mañas M.Pleixats R.Villarroya S. Organometallics 2001, 20: 4524 -
1d
Botella L.Nájera C. J. Organomet. Chem. 2002, 663: 46 -
1e
Alonso DA.Nájera C.Pacheco MC. J. Org. Chem. 2002, 67: 5588 -
1f
Llobet A.Masllorens E.Rodríguez M.Roglans A.Benet-Buchholz J. Eur. J. Inorg. Chem. 2004, 1601 -
1g
Nájera C.Gil-Moltó J.Karlström S. Adv. Synth. Catal. 2004, 346: 1798 -
1h
Singh R.Viciu MS.Kramareva N.Navarro O.Nolan SP. Org. Lett. 2005, 7: 1829 -
1i
Kabalka GW.Dadush E.Al-Masum M. Tetrahedron Lett. 2006, 47: 7459 -
1j
Srimani D.Sarkar A. Tetrahedron Lett. 2008, 49: 6304 -
1k
Gerbino DC.Mandolesi SD.Schmalz H.-G.Podestá JC. Eur. J. Org. Chem. 2009, 3964 -
1l
Alacid E.Nájera C. J. Organomet. Chem. 2009, 694: 1658 -
1m
Crociani B.Antonaroli S.Burattini M.Paoli P.Rossi P. Dalton. Trans. 2010, 39: 3665 -
1n
Ghosh R.Adarsh NN.Sarkar A. J. Org. Chem. 2010, 75: 5320 -
1o
Civicos JF.Alonso DA.Nájera C. Adv. Synth. Catal. 2011, 353: 1683 -
2a
Uozumi Y.Danjo H.Hayashi T. J. Org. Chem. 1999, 64: 3384 -
2b
Badone D.Baron M.Cardamone R.Ielmini A.Guzzi U. J. Organomet. Chem. 1997, 62: 7170 -
2c
Chen H.Deng M.-Z. J. Organomet. Chem. 2000, 603: 189 -
2d
Bouyssi D.Gerusz V.Balme G. Eur. J. Org. Chem. 2002, 2445 -
2e
Kabalka GW.Al-Masum M. Org. Lett. 2006, 8: 11 -
2f
Mino T.Kajiwara K.Shirae Y.Sakamoto M.Fujita T. Synlett 2008, 2711 -
2g
Ohmiya H.Makida Y.Tanaka T.Sawamura M. J. Am. Chem. Soc. 2008, 130: 17276 -
2h
Yamada YMA.Watanabe T.Torii K.Uozumi Y. Chem. Commun. 2009, 5594 -
2i
Maslak V.Tokic-Vujosevic Z.Saicic RN. Tetrahedron Lett. 2009, 50: 1858 -
2j
Nishikata T.Lipshutz BH. J. Am. Chem. Soc. 2009, 131: 12103 -
2k
Ohmiya H.Makida Y.Li D.Tanabe M.Sawamura M. J. Am. Chem. Soc. 2010, 132: 879 -
2l
Pigge FC. Synthesis 2010, 1745 -
2m
Ohmiya H.Yokokawa N.Sawamura M. Org. Lett. 2010, 12: 2438 -
2n
Li D.Tanaka T.Ohmiya H.Sawamura M. Org. Lett. 2010, 12: 3344 -
2o
Makida Y.Ohmiya H.Sawamura M. Chem. Asian. J. 2011, 6: 410 -
3a
Tsukamoto H.Sato M.Kondo Y. Chem. Commun. 2004, 1200 -
3b
Kayaki Y.Koda T.Ikariya T. Eur. J. Org. Chem. 2004, 4989 -
3c
Tsukamoto H.Uchiyama T.Suzuki T.Kondo Y. Org. Biomol. Chem. 2008, 6: 3005 -
3d
Kantam ML.Kumar KBS.Sreedhar B. J. Org. Chem. 2008, 73: 320 - Rh- and Ni-catalyzed cross-coupling reactions of allylic acetates, allylic amines, and allylic alcohols with arylboronic acids also have been reported, but, in these reactions, the range of applicable substrates was very narrow.
-
4a Rh:
Kabalka GW.Dong G.Venkataiah B. Org. Lett. 2003, 5: 893 - Ni:
-
4b
Trost BM.Spagnol MD. J. Chem. Soc., Perkin Trans. 1 1995, 2083 -
4c
Chung K.-G.Miyake Y.Uemura S. J. Chem. Soc., Perkin Trans. 1 2000, 15 -
5a
Kabalka GW.Yao M.-L.Borella S.Wu Z. Chem. Commun. 2005, 2492 -
5b
Kabalka GW.Yao M.-L.Borella Z.Wu Z.Ju J.-H.Quick T. J. Org. Chem. 2008, 73: 2668 -
6a
Leadbeater NE.Marco M. Angew. Chem. Int. Ed. 2003, 42: 1407 -
6b
Leadbeater NE.Marco M. J. Org. Chem. 2003, 68: 5660 -
6c
Yan J.Zhu M.Zhou Z. Eur. J. Org. Chem. 2006, 2060 - 7
Shirakawa E.Hayashi Y.Itoh K.Watabe R.Uchiyama N.Konagaya W.Masui S.Hayashi T. Angew. Chem. Int. Ed. 2012, 51: 218 - 8
Scrivanti A.Beghetto V.Bertoldini M.Matteoli U. Eur. J. Org. Chem. 2011, 264 -
12a
Yamada YMA.Takeda K.Takahashi H.Ikegami S. J. Org. Chem. 2003, 68: 7733 -
12b
Alacid E.Nájera C. Org. Lett. 2008, 10: 5011 -
13a
Huang X.-T.Chen Q.-Y. J. Org. Chem. 2001, 66: 4651 -
13b
Loy RN.Sanford MS. Org. Lett. 2011, 13: 2548 -
14a
Petasis NA.Zavialov IA. Tetrahedron Lett. 1996, 37: 567 -
14b
Salzbrunn S.Simon J.Prakash GKS.Petasis NA.Olah GA. Synlett 2000, 1485 -
14c
Prakash GKS.Panja C.Mathew T.Surampudi V.Petasis NA.Olah GA. Org. Lett. 2004, 6: 2205 -
14d
Lee S.MacMillan DWC. J. Am. Chem. Soc. 2007, 129: 15438 -
14e
Stefani HA.Cella R.Vieira AS. Tetrahedron 2007, 63: 3623 -
14f
Vieira AS.Ferreira FP.Fiorante PF.Guadagnin RC.Stefani HA. Tetrahedron 2008, 64: 3306 -
14g
Vieira AS.Fiorante PF.Hough TLS.Ferreira FP.Ludtke DS.Stefani HA. Org. Lett. 2008, 10: 5215 -
14h
Mitchell TA.Bode JW. J. Am. Chem. Soc. 2009, 131: 18057 -
14i
Zeng J.Vedachalam S.Xiang S.Liu X.-W. Org. Lett. 2011, 13: 42 -
14j
Molander GA.Cavalcanti LN. J. Org. Chem. 2011, 76: 7195 -
14k
Larouche-Gauthier R.Elford TG.Aggarwal V. J. Am. Chem. Soc. 2011, 133: 16794
References and Notes
We also tested the reactivity of other organoboronic acid derivatives. Potassium 4-methoxyphenyltrifluoroborate was able to react with 1a, but the yield was low (25%). Pinacol ester of 1a did not work as a substrate.
10The use of Cs2CO3 in the absence of H2O gave 3aa in a moderate yield (60%).
11In the general conditions, phenylboronic acid (1h) gave the cross-coupling product 3ha in a poor yield (7% yield), and the reaction of 4-acetylphenylboronic acid with 2a did not give the corresponding product.
15Typical Procedure for a Transition-Metal-Free Cross-Coupling Reaction of Allylic Bromides with Aryl- and Vinylboronic Acids: A mixture of 4-benzyloxyphenyl boronic acid (1d; 0.65 mmol, 1.3 equiv), cinnamyl bromide (2a; 0.5 mmol), and Cs2CO3 (0.75 mmol, 1.5 equiv) in CH2Cl2-H2O (1.65 mL, 10:1) was stirred at 60 ˚C for 18 h. After the reaction was completed, the reaction mixture was treated with aq 1 N HCl, extracted with CH2Cl2 and dried over MgSO4. The organic layer was concentrated and the resulting residue was purified by column chromatography on silica gel (hexane-EtOAc, 100:1) to give (E)-3-(4-benzyloxyphenyl)-1-phenyl-1-propene (3da) as a white solid in 91% yield (136.6 mg, 0.455 mmol); mp 44-48 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 3.49 (d, J = 6.9 Hz, 2 H), 5.05 (s, 2 H), 6.34 (dt, J = 15.6, 6.9 Hz, 1 H), 6.43 (d, J = 15.6 Hz, 1 H), 6.93 (d, J = 8.7 Hz, 2 H), 7.16 (d, J = 8.7 Hz, 2 H), 7.20 (t, J = 7.4 Hz, 1 H), 7.27-7.39 (m, 7 H), 7.43 (d, J = 6.9 Hz, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 38.6, 70.2, 115.0, 126.2, 127.2, 127.6, 128.0, 128.6, 128.7, 129.7 (two peaks overlap), 130.9, 133.0, 137.3, 137.6, 157.4. IR (neat): 3031, 1454, 1231 cm-¹. HRMS (EI): m/z [M]+ calcd for C22H20O: 300.1514; found: 300.1512.