Z Geburtshilfe Neonatol 2012; 216(03): 114-121
DOI: 10.1055/s-0032-1312669
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Speckle tracking – ein neues Ultraschallverfahren zur Beurteilung der fetalen Myokardfunktion

Speckle Tracking – A New Ultrasound Tool for the Assessment of Fetal Myocardial Function
A. Willruth
1   Abteilung für Geburtshilfe und Pränatale Medizin Universitätsklinikum Bonn
,
A. Geipel
1   Abteilung für Geburtshilfe und Pränatale Medizin Universitätsklinikum Bonn
,
W. Merz
1   Abteilung für Geburtshilfe und Pränatale Medizin Universitätsklinikum Bonn
,
U. Gembruch
1   Abteilung für Geburtshilfe und Pränatale Medizin Universitätsklinikum Bonn
› Author Affiliations
Further Information

Publication History

eingereicht 11 April 2012

angenommen nach Überarbeitung 29 April 2012

Publication Date:
21 June 2012 (online)

Zusammenfassung

Speckle tracking ist eine neue echokardiografische Technik, die quantitativ Informationen über 2-dimensionale globale und segmentale myokardiale Wandbewegung und Deformierungsparameter (Strain, Strain rate) liefert. Multiple Faktoren, wie fetale Bewegungen, hohe Herzfrequenz, nierdiger Blutdruck, kleine Herzgröße, physiologische fetale Herzbewegungen im Perikardbeutel, unterschiedliche kardiale Füllungszustände und myokardiale Reifungsprozesse während der Schwangerschaft sowie Polyhydramnie, maternale Adipositas und Pulsation der Aorta, können die Bildqualität stark beeinträchtigen und müssen bei der Analyse der fetalen kardialen Funktion stets berücksichtigt werden. Die alleinige Betrachtung der myokardialen Geschwindigkeiten enthält daher Artefakte, sodass sich die Bestimmung von Strain und Strain rate als quantitative objektivierbare Technik zur Einschätzung der globalen myokardialen Funktion und Kontraktilität etabliert hat. In der Erwachsenen-Kardiologie wird speckle tracking zunehmend zur erweiterten Herzfunktionsanalyse eingesetzt, wobei „longitudinal peak systolic Strain” der gebräuchlichste und best untersuchteste Deformierungsparameter zur Analyse der segmentalen und globalen Myokardkontraktilität bei Erwachsenen ist. Im Gegensatz zur Doppler-basierten Echokardiografie (TDI) ermöglicht speckle tracking (z. B. EchoPac®; syngo® velocity vector imaging, VVI) die Analyse der myokardialen Funktion unabhängig vom Insonationswinkel, was in der fetalen Echokardiografie von besonderem Vorteil ist. Zeitaufwand und Lernkurve zur Aufnahme optimaler hochauflösender Videosequenzen schränken den Einsatz der speckle tracking Technik in der täglichen Routine derzeit noch ein. Ob speckle tracking zukünftig eher als etablierte Verfahren subklinische myokardiale Dysfunktionen nachweisen oder zur besseren Diskriminierung zwischen gesunden und kardial erkrankten Feten beitragen kann, muss bei den unterschiedlichen fetalen Erkrankungen in Studien mit größerer Fallzahl untersucht werden.

Abstract

Speckle tracking is a new ultrasound tool to assess 2D ventricular global and segmental myocardial velocity and deformation (strain, strain rate). Multiple factors such as fetal motion, high heart rates, low blood pressure, small size of the heart, physiological cardiac translation, filling and maturational changes of myocardium, polyhydramnion, maternal obesity and aortic pulsation can degrade the image quality and result in artifacts and measurement errors which may have an impact on the final analysis. Therefore deformation indices such as strain and strain rate offer a quantitative technique for the estimation of global and segmental myocardial function and contractility. At present longitudinal peak systolic strain is the most commonly applied deformation parameter used to analyse segmental and global myocardial contractility in adults. When obtained using Doppler methods, these measurements are angle dependent, whereas speckle tracking techniques overcome the limitations of Doppler echocardiography which is a particular advantage in foetal echocardiography. Nevertheless, the time and training necessary to acquire high-quality video clips limit the implementation of speckle tracking into clinical routine. It is not yet clear whether this new technique will identify subclinical myocardial impairment earlier than with current techniques or allow for better discrimination between healthy fetuses and fetuses with congenital heart disease. The clinical use of speckle tracking will have to be demonstrated in larger groups of complicated pregnancies.

 
  • Literatur

  • 1 Veille JC, Sivakoff M, Nemeth M. Evaluation of the human fetal cardiac size and function. Am J Perinatol 1990; 7: 54-59
  • 2 Rizzo G, Capponi A. Fetal cardiac abnormalities. In: James DK, Steer PJ, Weiner CP, Gonik B. High risk pregnancy: Management options. 3rd edition Philadelphia: Saunders Elsevier Inc; 2006: 505-553
  • 3 Feigenbaum H. Echocardiograph. Philadelphia: Lea&Febiger; 1986
  • 4 Simpson J. Echocardiographic evaluation of cardiac function in the fetus. Prenat Diagn 2004; 24: 1081-1091
  • 5 Stefani L, Toncelli L, Gianassi M et al. Two-dimensional tracking and TDI are consistent methods for evaluating myocardial longitudinal peak strain in left and right ventricle basal segments in athletes. Cardiovasc Ultrasound 2007; 5: 7
  • 6 Mondillo S, Galderisi M, Mele D et al. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ulrasound Med 2011; 30: 71-83
  • 7 Harada K, Tsuda A, Orino T et al. Tissue Doppler imaging in the normal fetus. Int J Cardiol 1999; 71: 227-234
  • 8 Rychik J, Tian ZY. Quantitative assessment of myocardial tissue velocities in normal children with Doppler tissue imaging. Am J Cardiol 1996; 77: 1254-1257
  • 9 Kapusta L, Thijssen JM, Cuypers MH et al. Assessment of myocardial velocities in healthy children using tissue Doppler imaging. Ultrasound Med Biol 2000; 26: 229-237
  • 10 Kukulski T, Hubbert L, Arnold M et al. Normal regional right ventricular function and its change with age: a Doppler myocardial imaging study. J Am Soc Echocardiogr 2000; 13: 194-204
  • 11 Kowalski M, Kukulski T, Jamal F et al. Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. Ultrasound Med Biol 2001; 27: 1087-1097
  • 12 Weidemann F, Eyskens B, Jamal F et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J Am Soc Echocardiogr 2002; 15: 20-28
  • 13 Paladini D, Lamberti A, Teodoro A et al. Tissue Doppler imaging of the fetal heart. Ultrasound Obstet Gynecol 2000; 16: 530-535
  • 14 Chan L, Fok W, Wong J et al. Reference charts of gestation-specific tissue Doppler imaging indices of systolic and diastolic functions in the normal fetal heart. Am Heart J 2005; 150: 750-755
  • 15 Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time?. J Am Coll Cardiol 2006; 47: 1313-1327
  • 16 Thomas G. Tissue Doppler echocardiography – a case of right tool, wrong use. Cardiovasc Ultrasound 2004; 2: 12
  • 17 Younoszai AK, Saudek DE, Emery SP et al. Evaluation of myocardial mechanics in the fetus by velocity vector imaging. J Am Soc Echocardiogr 2008; 21: 470-474
  • 18 Pirat B, Khoury DS, Hartley CJ et al. A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion. J Am Coll Cardiol 2008; 51: 651-659
  • 19 Chen J, Cao T, Duan Y et al. Velocity vector imaging in assessing the regional systolic function of patients with post myocardial infarction. Echocardiography 2007; 24: 940-945
  • 20 Stefani L, Toncelli L, Di Tante V et al. Supernormal functional reserve of apical segments in elite soccer players: an ultrasound speckle tracking handgrip stress study. Cardiovasc Ultrasound 2008; 6: 14
  • 21 Stefani L, Pedrizzetti G, De Luca A et al. Real-time evaluation of longitudinal peak systolic strain (speckle tracking measurement) in left and right ventricles of athletes. Cardiovasc Ultrasound 2009; 7: 17
  • 22 Jurcut R, Pappas CJ, Masci PG et al. Detection of regional myocardial dysfunction in patients with acute myocardial infarction using velocity vector imaging. J Am Soc Echocardiogr 2008; 21: 879-886
  • 23 Barker PC, Houle H, Li JS et al. Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac function: novel experience with velocity vector imaging. Echocardiography 2009; 26: 28-36
  • 24 Peng QH, Zhou QC, Zeng S et al. Evaluation of regional left ventricular longitudinal function in 151 normal fetuses using velocity vector imaging. Prenat Diagn 2009; 29: 1149-1155
  • 25 Van Mieghem T, Giusca S, DeKoninck P et al. Prospective assessment of fetal cardiac function with speckle tracking in healthy fetuses and recipient fetuses of twin-to-twin transfusion syndrome. J Am Soc Echocardiogr 2010; 23: 301-308
  • 26 D’hooge J, Heimdal A, Jamal F et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 2000; 1: 154-170
  • 27 Messing B, Valsky D, Rosenak D et al. 3D/4D ultrasound for fetal cardiac ventricle mass measurement in the second half of gestation in normal and anomalous cases. Ultrasound Obstet Gynecol 2008; 32: 335
  • 28 Perk G, Tunick P, Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography – from technical considerations to cinical applications. J Am Soc Echocardiogr 2007; 20: 234-243
  • 29 Van Mieghem T, DeKoninck P, Steenhaut P et al. Methods for prenatal assessment of fetal cardiac function. Prenat Diagn 2009; 29: 1193-1203
  • 30 Teske A, De Boeck B, Melman P et al. Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image aquisition and analysis using tissue Doppler and speckle tracking. Cardiavasc Ultrasound 2007; 5: 27
  • 31 Vannan MA, Pedrizzetti G, Li P et al. Effect of cardiac resynchronization therapy on longitudinal and circumferential left ventricular mechanics by velocity vector imaging: description and initial clinical application of a novel method using high-frame rate B-mode echocardiographic images. Echocardiography 2005; 22: 826-830
  • 32 Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 2006; 92 (Suppl. 01) i2-i13
  • 33 Giusca S, Jurcut R, Ginghina C et al. The right ventricle: anatomy, physiology and functional assessment. Acta Cardiol 2010; 65: 67-77
  • 34 La Gerche A, Jurcut R, Voigt JU. Right ventricular function by strain echocardiography. Curr Opin Cardiol 2010; 25: 430-436
  • 35 Lang RM, Bierig M, Devereux RB et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005; 18: 1440-1463
  • 36 Sutherland GR, Di Salvo G, Claus P et al. Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 2004; 17: 788-802
  • 37 Urheim S, Edvardsen T, Torp H et al. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 2000; 102: 1158-1164
  • 38 Dong S, Hees P, Siu C et al. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am J Physiol Heart Circ Physiol 2001; 281: H2002-H2009
  • 39 Helle-Valle T, Crosby J, Edvardsen T et al. New noninvasive method for assessment of left ventricular rotation: Speckle tracking echocardiography. Circulation 2005; 112: 3149-3156
  • 40 Notomi Y, Lysyansky P, Setser R et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 2005; 45: 2034-2041
  • 41 Takeuchi M, Nakai H, Kokumai M et al. Age-related changes in left ventricular twist assessed by two-dimensional speckle-tracking imaging. J Am Soc Echocardiogr 2006; 19: 1077-1084
  • 42 Willruth AM, Geipel AK, Fimmers R et al. Assessment of right ventricular global and regional longitudinal peak systolic strain, strain rate and velocity in healthy fetuses and impact of gestational age using a novel speckle/feature-tracking based algorithm. Ultrasound Obstet Gynecol 2011; 37: 143-149
  • 43 Willruth AM, Geipel A, Berg C et al. Assessment of left ventricular global and regional longitudinal peak systolic strain, strain rate and velocity with feature tracking in healthy fetuses. Ultraschall Med 2011; Feb 3 (Epub ahead of print)
  • 44 Willruth A, Geipel A, Berg C et al. Comparison of global and regional right and left ventricular longitudinal peak systolic strain, strain rate and velocity in healthy fetuses using a novel feature tracking technique. J Perinat Med 2011; 39: 549-556
  • 45 Willruth A, Geipel A, Berg C et al. Assessment of fetal global and regional ventricular function in congenital heart disease using a novel feature tracking technique. Ultraschall Med 2011; May 31 (Epub ahead of print)
  • 46 Willruth A, Geipel A, Berg C et al. Assessment of cardiac function in monochorionic diamniotic twin pregnancies with twin-to-twin transfusion syndrome before and after fetoscopic laser photocoagulation using a novel speckle tracking technique. Ultraschall Med 2012; April 5 (accepted)
  • 47 D’hooge J, Bijnens B, Jamal F et al. High frame rate myocardial integrated backscatter. Does this change our understanding of this acoustic parameter?. Eur J Echocardiogr 2000; 1: 32-41
  • 48 Kutty S, Deatsman SL, Nugent ML et al. Assessment of regional right ventricular velocities, strain, and displacement in normal children using velocity vector imaging. Echocardiography 2008; 25: 294-307
  • 49 Weidemann F, Kowalski M, D’hooge J et al. Doppler myocardial imaging. A new tool to assess regional inhomogeneity in cardiac function. Basic Res Cardiol 2001; 96: 595-605
  • 50 Ta-Shma A, Perles Z, Gavri S et al. Analysis of segmental and global function of the fetal heart using novel automatic functional imaging. J Am Soc Echocardiogr 2008; 21: 146-150
  • 51 Perles Z, Nir A, Gavri S et al. Assessment of fetal myocardial performance using myocardial deformation analysis. Am J Cardiol 2007; 99: 993-996
  • 52 Di Salvo G, Russo MG, Paladini D et al. Quantification of regional left and right ventricular longitudinal function in 75 normal fetuses using ultrasound-based strain rate and strain imaging. Ultrasound Med Biol 2005; 31: 1159-1162
  • 53 Friedman WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis 1972; 15: 87-111
  • 54 Di Salvo G, Russo MG, Paladini D et al. Two-dimensional strain to assess regional left and right ventricular longitudinal function in 100 normal foetuses. Eur J Echocardiogr 2008; 9: 754-756
  • 55 Greenbaum RA, Ho SY, Gibson DG et al. Left ventricular fibre architecture in man. Br Heart J 1981; 45: 248-263
  • 56 Talbert DG, Johnson P. The pulmonary vein Doppler flow velocity waveform: feature analysis by comparison of in vivo pressures and flows with those in a computerized fetal physiological model. Ultrasound Obstet Gynecol 2000; 16: 457-467
  • 57 Degani S. Fetal cerebrovascular circulation: a review of prenatal ultrasound assessment. Gynecol Obstet Invest 2008; 66: 184-196
  • 58 Gardiner HM. Response of the fetal heart to changes in load: from hyperplasia to heart failure. Heart 2005; 91: 871-873
  • 59 Kiserud T, Acharya G. The fetal circulation. Prenat Diagn 2004; 24: 1049-1059
  • 60 Rudolph AM. Myocardial growth before and after birth: clinical implications. Acta Paediatr 2000; 89: 129-133
  • 61 Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 2007; 87: 521-544
  • 62 Rosner A, Bijnens B, Hansen M et al. Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr 2009; 10: 271-277
  • 63 Rasanen J, Huhta JC, Weiner S et al. Fetal branch pulmonary arterial vascular impedance during the second half of pregnancy. Am J Obstet Gynecol 1996; 174: 1441-1449
  • 64 Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 2010; 56: 130-140
  • 65 Johnson P, Maxwell DJ, Tynan MJ et al. Intracardiac pressures in the human fetus. Heart 2000; 84: 59-63
  • 66 Kenny JF, Plappert T, Doubilet P et al. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation 1986; 74: 1208-1216
  • 67 Harada K, Rice MJ, Shiota T et al. Gestational age- and growth-related alterations in fetal right and left ventricular diastolic filling patterns. Am J Cardiol 1997; 79: 173-177
  • 68 Harada K, Tsuda A, Shiota T et al. Effect of left ventricular wall mass on Doppler filling patterns in the developing normal human heart. Am J Cardiol 2000; 86: 659-663
  • 69 Falkensammer CB, Paul J, Huhta JC. Fetal congestive heart failure: correlation of Tei-index and Cardiovascular-score. J Perinat Med 2001; 29: 390-398
  • 70 Habli M, Michelfelder E, Livingston J et al. Acute effects of selective fetoscopic laser photocoagulation on recipient cardiac function in twin-twin transfusion syndrome. Am J Obstet Gynecol 2008; 199: 412.e1-e6
  • 71 Michelfelder E, Gottliebson W, Border W et al. Early manifestations and spectrum of recipient twin cardiomyopathy in twin-twin transfusion syndrome: relation to Quintero stage. Ultrasound Obstet Gynecol 2007; 30: 965-971
  • 72 Raboisson MJ, Fouron JC, Lamoureux J et al. Early intertwin differences in myocardial performance during the twin-to-twin transfusion syndrome. Circulation 2004; 110: 3043-3048
  • 73 Barrea C, Alkazaleh F, Ryan G et al. Prenatal cardiovascular manifestations in the twin-to-twin transfusion syndrome recipients and the impact of therapeutic amnioreduction. Am J Obstet Gynecol 2005; 192: 892-902
  • 74 Rychik J, Tian Z, Bebbington M et al. The twin-twin transfusion syndrome: spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease. Am J Obstet Gynecol 2007; 197 () 392.e1-e8
  • 75 Lewi L, Jani J, Blickstein I et al. The outcome of monochorionic diamniotic twin gestations in the era of invasive fetal therapy: a prospective cohort study. Am J Obstet Gynecol 2008; 199: 514.e1-e8
  • 76 Sebire NJ, Souka A, Skentou H et al. Early prediction of severe twin-to-twin transfusion syndrome. Hum Reprod 2000; 15: 2008-2010
  • 77 Shah AD, Border WL, Crombleholme TM et al. Initial fetal cardiovascular profile score predicts recipient twin outcome in twin-twin transfusion syndrome. J Am Soc Echocardiogr 2008; 21: 1105-1108
  • 78 Galea P, Barigye O, Wee L et al. The placenta contributes to activation of the renin angiotensin system in twin-twin transfusion syndrome. Placenta 2008; 29: 734-742
  • 79 Van Mieghem T, Klaritsch P, Done E et al. Assessment of fetal cardiac function before and after therapy for twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2009; 200 (04) 400.e1-400.e7
  • 80 Barrea C, Hornberger LK, Alkazaleh F et al. Impact of selective laser ablation of placental anastomoses on the cardiovascular pathology of the recipient twin in severe twin-twin transfusion syndrome. Am J Obstet Gynecol 2006; 195: 1388-1395
  • 81 Bebbington M. Twin-to-twin transfusion syndrome: current understanding of pathophysiology, in-utero therapy and impact for future development. Semin Fetal Neonatal Med 2010; 15: 15-20
  • 82 Mahieu-Caputo D, Salomon LJ, Le Bidois J et al. Fetal hypertension: an insight into the pathogenesis of the twin-twin transfusion syndrome. Prenat Diagn 2003; 23: 640-645
  • 83 Bajoria R, Sullivan M, Fisk NM. Endothelin concentrations in monochorionic twins with severe twin-twin transfusion syndrome. Hum Reprod 1999; 14: 1614-1618
  • 84 Stirnemann JJ, Mougeot M, Proulx F et al. Profiling fetal cardiac function in twin-twin transfusion syndrome. Ultrasound Obstet Gynecol 2010; 35: 19-27
  • 85 Gratacós E, Van Schoubroeck D, Carreras E et al. Impact of laser coagulation in severe twin-twin transfusion syndrome on fetal Doppler indices and venous blood flow volume. Ultrasound Obstet Gynecol 2002; 20: 125-130
  • 86 Gratacós E, Van Schoubroeck D, Carreras E et al. Transient hydropic signs in the donor fetus after fetoscopic laser coagulation in severe twin-twin transfusion syndrome: incidence and clinical relevance. Ultrasound Obstet Gynecol 2002; 19: 449-453
  • 87 Pacileo G, Calabro P, Limongelli G et al. Left ventricular remodeling, mechanics, and tissue characterization in congenital aortic stenosis. J Am Soc Echocardiogr 2003; 16: 214-220
  • 88 Kiraly P, Kapusta L, Thijssen JM et al. Left ventricular myocardial function in congenital valvar aortic stenosis assessed by ultrasound tissue-velocity and strain-rate techniques. Ultrasound Med Biol 2003; 29: 615-620
  • 89 Eidem BW, McMahon CJ, Ayres NA et al. Impact of chronic left ventricular preload and afterload on Doppler tissue imaging velocities: a study in congenital heart disease. J Am Soc Echocardiogr 2005; 18: 830-838
  • 90 Sheehan F, Redington A. The right ventricle: anatomy, physiology and clinical imaging. Heart 2008; 94: 1510-1515
  • 91 Mertens L, Ganame J, Eyskens B et al. Pediatric and congenital heart disease. In: Sutherland GR, Hatle L, Claus P, D’hooge J, Bijnens BH. Doppler myocardial imaging. A textbook. Hasselt, Belgium BSKW; 2006: 325-339