Synthesis 2012; 44(20): 3231-3237
DOI: 10.1055/s-0032-1317131
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient C–H Arylation of a 5-Phenyl-1H-tetrazole Derivative: A Practical Synthesis of an Angiotensin II Receptor Blocker

Masahiko Seki*
Mitsubishi Tanabe Pharma Corporation, 2-6-18, Kitahama, Chuo-ku, Osaka 541-8505, Japan, Fax: +81(6)62013150   Email: seki.masahiko@mm.mt-pharma.co.jp
› Author Affiliations
Further Information

Publication History

Received: 28 June 2012

Accepted after revision: 26 July 2012

Publication Date:
21 August 2012 (online)


Abstract

An efficient protocol for C–H arylation of 1-benzyl-5-phenyl-1H-tetrazole has been developed which involves an extremely small amount of commercially available [RuCl2(p-cymene)]2 (Ru: 0.63 mol%) and a specific amount of triphenylphosphine (ratio Ph3P/Ru 2:1). The obtained biphenyl derivative was readily elaborated to give candesartan cilexetil, a potent angiotensin II receptor blocker by means of an efficient removal of the benzyl protecting group by palladium on carbon catalyzed transfer hydrogenation in the final step.

 
  • References

    • 1a The Art of Process Chemistry . Yasuda N. Wiley-VCH; Weinheim: 2011
    • 1b Anderson NG. Practical Process Research & Development . Academic Press; Oxford: 2000
    • 1c Green Chemistry in the Pharmaceutical Industry . Dunn P, Wells A, Williams MT. Wiley-VCH; Weinheim: 2010

      For selected examples: see, reviews:
    • 2a Daugulis O, Do J.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 2b Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 2c Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 2d Willis MC. Chem. Rev. 2010; 110: 725
    • 2e Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 2f Ackermann L. Chem. Commun. 2010; 46: 4866
    • 2g Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2h Ackermann L. Chem. Rev. 2011; 111: 1315
    • 2i Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 2j Ru-catalyzed C–H activation: Oi S, Fukita S, Hirata N, Watanuki NMiyano S, Inoue Y. Org. Lett. 2001; 3: 2579
    • 2k See also: Ackermann L, Althammer A, Born R. Synlett 2007; 2833
    • 2l See also: Ackermann LA, Althammer AR, Born R. Tetrahedron 2008; 64: 6115
    • 2m See also: Ozdemir I, Demir S, Cetinkaya B, Gourlaouen C, Maseras F, Bruneau C, Dixneuf PH. J. Am. Chem. Soc. 2008; 130: 1156
    • 2n See also: Ackermann L, Vicente R, Althammer A. Org. Lett. 2008; 10: 2299
    • 2o See also: Oi S, Funayama R, Hattori T, Inoue Y. Tetrahedron 2008; 64: 6051
    • 2p See also: Ackermann L, Born R, Vicente R. ChemSusChem 2009; 2: 546
    • 2q See also: Ackermann L, Novák P. Org. Lett. 2009; 11: 4966
    • 2r See also: Požgan F, Dixneuf PH. Adv. Synth. Catal. 2009; 351: 1737
    • 2s See also: Ackermann L, Novák P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
    • 2t See also: Inoue S, Shiota H, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2009; 131: 6898
    • 2u See also: Miura H, Wada K, Hosokawa S, Inoue M. Chem.–Eur. J. 2010; 16: 4186
    • 2v See also: Arockiam PB, Fischmeister C, Bruneau C, Dixneuf PH. Angew. Chem. Int. Ed. 2010; 49: 6629
    • 2w See also: Ackermann L, Novák P, Vicente R, Pirovano V, Potukuchi HK. Synthesis 2010; 2245
    • 2x See also: Chan W.-W, Yeung S.-H, Zhou Z, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 604
    • 2y See also: Ackermann L, Vicente R, Potukuchi HK, Pirovano V. Org. Lett. 2010; 12: 5032
    • 2z See also: Flegeau EF, Bruneau C, Dixneuf PH, Jutand A. J. Am. Chem. Soc. 2011; 133: 10161
    • 2aa See also: Ackermann L, Lygin AV. Org. Lett. 2011; 13: 3332
    • 2ab See also: Li B, Bheeter CB, Darcel C, Dixneuf PH. ACS Catal. 2011; 1: 1221
    • 2ac See also: Padala K, Jeganmohan M. Org. Lett. 2012; 14: 1134
    • 2ad See also: Chinnagolla RK, Pimparker S, Jeganmohan M. Org. Lett. 2012; 14: 3032
    • 2ae Pd-catalyzed C–H activation: Brasche G, Garcia-Fortanet J, Buchwald SL. Org. Lett. 2008; 10: 2207
    • 2af See also: Campeau L.-C, Staurt DR, Leclerc J.-P, Bertrand-Laperte M, Villemure E, Sun H.-Y, Lasserre S, Guimond N, Lecavallier M, Fagnou K. J. Am. Chem. Soc. 2009; 131: 3291
    • 2ag See also: Lapointe D, Fagnou K. Org. Lett. 2009; 11: 4160
    • 2ah See also: Mukai T, Hirano K, Satoh T, Miura M. Org. Lett. 2010; 12: 1360
    • 2ai See also: Wasa M, Worrel BT, Yu J.-Q. Angew. Chem. Int. Ed. 2010; 49: 1275
    • 2aj See also: Nishikata T, Abela AR, Lipshutz BH. Angew. Chem. Int. Ed. 2010; 49: 781
    • 3a Seo A, Tohnishi M, Nakao H, Furuya T, Kodama H, Tsubata K, Fujioka S, Kodama H, Nishimatsu T, Hirooka T In Pesticide Chemistry . Ohkawa H, Miyagawa H, Lee PW. Wiley-VCH; Weinheim: 2007: 127-135
    • 3b Ouellet SG, Roy A, Molinaro C, Angelaud R, Marcoux J.-F, O’Shea PD, Davies IW. J. Org. Chem. 2011; 76: 1436
    • 4a Seki M. ACS Catal. 2011; 1: 607
    • 4b Seki M, Nagahama M. J. Org. Chem. 2011; 76: 10198
  • 5 Kubo K, Kohara Y, Yoshimura Y, Inada Y, Shibouta Y, Furukawa Y, Kato T, Nishikawa K, Naka T. J. Med. Chem. 1993; 36: 2343
  • 6 Beutler U, Boehm M, Fuenfschilling PC, Heinz T, Mutz J.-P, Onken U, Mueller M, Zaugg W. Org. Process Res. Dev. 2007; 11: 892
  • 7 Larsen RD, King AO, Chen CY, Corley EG, Foster BS, Roberts FE, Yang C, Lieberman DR, Reamer RA, Tschaen DM, Verhoeven TR, Reider PJ, Lo YS, Rossano LT, Brookes S, Meloni D, Moore JR, Arnett JF. J. Org. Chem. 1994; 59: 6391
  • 8 For example: see Sampath A, Goverdhan G, Yakambram B, Raghupathi RA, Prabhakar RV, Pratap RP. Org. Process Res. Dev. 2012; 16: 682
  • 9 For the carboxylate-bound metal complex, see: Garcia-Cuadrado D, Braga AA. C, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2006; 128: 1066
  • 10 Flegeau EF, Bruneau C, Dixneuf PH, Jutand A. J. Am. Chem. Soc. 2011; 133: 10161
  • 11 Under stoichiometric metal conditions, phosphine ligand retards the C–H arylation, see: Tan Y, Hartwig JF. J. Am. Chem. Soc. 2011; 133: 3308
  • 12 The Pd/C catalysts tested in this study have two types of Pd distribution: eggshell and thickshell. In the eggshell-type catalyst, Pd is distributed close to the surface, within 50–150 nm depth. The thickshell-type catalyst is one in which Pd is distributed 200–500 nm from the surface. The degree of reduction, i.e. the content of Pd2+ of the oxidized and the reduced-type catalysts, is 0–25% and 25–100%, respectively.
  • 13 Calvo L, Gilarranz MA, Casa JA, Mohedano AF, Rodriguez JJ. Ind. Eng. Chem. Res. 2005; 44: 6661 ; and references cited therein
    • 14a Mihina JS, Herbst RM. J. Org. Chem. 1950; 15: 1082
    • 14b Russel RG. Ann. N.Y. Acad. Sci. 2006; 1068: 367
    • 14c Daemmrich AA, Bowden ME. Chem. Eng. News 2005; 83 No. 25: 70
    • 14d Binkley N, Ringe JP, Reed JJ, Ljunggren O, Holick MF, Minne HW, Liu M, Lamotta A, West JA, Santora AC. Bone 2009; 44: 639
    • 14e Lan G, Peng L, Xie X, Peng F, Wang Y, Yu S. Transplant. Proc. 2008; 40: 3496
    • 14f Mawatari T, Miura H, Hamai S, Shuto T, Nakashima Y, Okazaki K, Kinukawa N, Sakai S, Hoffmann PF, Iwamoto Y, Keaveny TM. Arthritis Rheum. 2008; 58: 3340