Synthesis 2013; 45(20): 2875-2887
DOI: 10.1055/s-0033-1338519
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Oxidant Properties of Phase 1 Benzepine N-Oxides of Common Antipsychotic Drugs

Jochen Körber
a   Institut für Organische Chemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany   Fax: +49(6131)3924533   Email: nubbemey@uni-mainz.de
,
Stefan Löffler
b   Department of Psychiatry and Psychotherapy, Sana Klinikum Offenbach, Teaching Hospital of Goethe University, 63069 Offenbach, Germany
,
Dieter Schollmeyer
a   Institut für Organische Chemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany   Fax: +49(6131)3924533   Email: nubbemey@uni-mainz.de
,
Udo Nubbemeyer*
a   Institut für Organische Chemie, Johannes Gutenberg-Universität, 55128 Mainz, Germany   Fax: +49(6131)3924533   Email: nubbemey@uni-mainz.de
› Author Affiliations
Further Information

Publication History

Received: 28 May 2013

Accepted after revision: 20 July 2013

Publication Date:
15 August 2013 (online)


Abstract

There is increasing evidence that cell constituents are oxidized by widely used antipsychotic drugs but until now the underlying chemistry has remained unclear. It is well known that such drugs readily undergo N-oxidation as a first key metabolic step. To gain insight into the problem, the tertiary phase 1 N-oxides of clozapine, olanzapine, quetiapine, and zotepine were synthesized, together with the N,S-dioxides of quetiapine and zotepine. These N-oxides were then subjected to well-established chemical transformations to test their oxidant properties in group VIII transition-metal­-catalyzed reactions. In the osmium tetroxide catalyzed dihydroxylation of styrene or cinnamyl alcohol and in the tetrapropylammonium perruthenate catalyzed oxidation of cinnamyl alcohol, the benzepine N-oxides could be used as replacements for the standard oxidant, N-methylmorpholine N-oxide (NMO) with varying degrees of efficiency. From a chemical point of view, clozapine N-oxide displayed a comparable oxidation power to NMO, characterizing the benzepines as oxygen carriers. Moreover, quetiapine was found to be an excellent double oxygen acceptor, undergoing initial N-oxidation and subsequent S-oxidation. It is therefore worthwhile considering whether oxidative damage to the human body might be related to the potential redox properties of common antipsychotic drugs.

Supporting Information

 
  • References

  • 2 Nishioka N, Arnold SE. Am. J. Geriatr. Psychiatry 2004; 12: 167
    • 3a Reinke A, Martins MR, Lima MS, Moreira JC, Dal-Pizzol F, Quevedo J. Neurosci. Lett. 2004; 372: 157
    • 3b Walss-Bass C, Weintraub ST, Hatch J, Mintz J, Chaudhuri AR. Int. J. Neuropsychopharmacol. 2008; 11: 1097
    • 3c Baig MR, Navaira E, Escamilla M, Raventos H, Walss-Bass C. J. Psychiatr. Pract. 2010; 16: 325

      Moreover, CN induced up-regulation of the proapoptotic gene bax α and the production of an excess of superoxide anion in circulating granulocytes from all treated patients, whereas neither septicemia-induced respiratory bursts in neutrophils nor ON induced such effects; see:
    • 4a Loeffler S, Fehsel K, Henning U, Fischer J, Agelink M, Kolb-Bachofen V, Klimke A. Pharmacopsychiatry 2003; 36: 37
    • 4b Fehsel K, Loeffler S, Krieger K, Henning U, Agelink M, Kolb-Bachofen V, Klimke A. J. Clin. Psychopharmacol. 2005; 25: 419
    • 5a Gauch R, Michaelis W. Farmaco, Ed. Prat. 1971; 26: 667
    • 5b Pirmohamed M, Williams D, Madden S, Templeton E, Park BK. J. Pharmacol. Exp. Ther. 1995; 272: 984
    • 5c Chang WH, Lin SK, Lane HY, Wei FC, Hu WH, Lam YW, Jann MW. Prog. Neuropsychopharmacol. Biol. Psychiatry 1998; 22: 723
    • 5d Bun H, Disdier B, Aubert C, Catalin J. Fundam. Clin. Pharmacol. 1999; 13: 577
    • 5e Aitchison KJ, Jann MW, Zhao JH, Sakai T, Zaher H, Wolff K, Collier DA, Kerwin RW, Gonzalez FJ. J. Psychopharmacol. (London U. K.) 2000; 14: 353
    • 5f Heiser P, Schüler-Springorum M, Schulte E, Hausmann C, Remschmidt H, Krieg J.-C, Vedder H. Eur. J. Pharmacol. 2003; 476: 167
  • 6 Conklin BR. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 4777
    • 7a Bender D, Holschbach M, Stöcklin G. Nucl. Med. Biol. 1994; 21: 921
    • 7b Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB, Nattie E, Dymecki SM. Science (Washington D.C.) 2011; 333: 637

    • For a comment on (b), see:
    • 7c Löffler S, Körber J, Nubbemeyer U, Fehsel K. Science (Washington D.C.) 2012; 337: 646

    • For the response to the comment, see:
    • 7d Dymecki SM, Ray RR, Brust RD, Corcoran AE, Kim JC, Richerson GB, Nattie E. Science (Washington D.C.) 2012; 337: 646
  • 8 Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 5163
  • 9 Some authors have even mentioned the presumed inertness of CNO in the title of a publication: see ref. 8.
    • 10a VanRheenen V, Cha DY, Hartley WM. Org. Synth. Coll. Vol. VI . Wiley; London: 1988
    • 10b Chappuis G, Tamm C. Helv. Chim. Acta 1982; 65: 521
    • 11a Jacobsen EN, Markó I, Mungall WS, Schröder G, Sharpless KB. J. Am. Chem. Soc. 1988; 110: 1968
    • 11b Wai JS. M, Marko L, Svendsen JS, Finn MG, Jacobsen EN, Sharpless KB. J. Am. Chem. Soc. 1989; 111: 1123 ; see also ref. 10
    • 12a Griffith WP, Ley SV, Whitcombe GP, White AD. J. Chem. Soc., Chem. Commun. 1987; 1625
    • 12b Ley SV, Norman J, Griffith WP, Marsden SP. Synthesis 1994; 639
  • 13 For a synthesis of ONO, see: Thatipalli P, Kumar R, Bulusu C, Chakka R, Padi PR, Yerra A, Bollikonda S. ARKIVOC 2008; (xi): 195
  • 14 For a synthesis of QNO under neutral conditions, see: Kumar SK, Reddy KT, Kanth AV, Omprakash G, Dubey PK. Org. Chem.: Indian J. 2012; 8: 164
  • 15 For a synthesis of ZNO, see: Shiraga T, Kaneko H, Iwasaki K, Tozuka Z, Suzuki A, Hata T. Xenobiotica 1999; 29: 217
  • 16 For a synthesis of CNO, see: Garipelli N, Reddy BM, Jithan AV. Int. J. Pharm. Sci. Nanotechnol. 2010; 2: 762
  • 17 Calligaro DO, Fairhurst J, Hotten TM, Moore NA, Tupper DE. Bioorg. Med. Chem. Lett. 1997; 7: 25
  • 18 The oxidation of CNO and ONO with MCPBA at 50% conversion gave unknown polar oxidation products, mostly through decomposition.
  • 19 Crystallographic data for compounds QNO, ZNO, and ZNSO2 have been deposited with the accession numbers CCDC 907672, 907670, and 907671, respectively, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
  • 20 If we consider the exocyclic C–N bond between the C atom of the thiazepine and N atom of the piperazine as a partial double bond (amidine mesomerism), the N-oxide-derived piperazine–thiazepine moiety can form a chiral axis (racemate). In combination with the chiral S-oxide (racemate), this led to the presence of two slowly interconverting diastereomeric conformers that appeared as a double set of peaks in the spectra. The two conformers were successfully separated by preparative HPLC. On standing, the separated conformers underwent slow equilibration to regenerate the original conformer mixture.

    • For syntheses of QSO, see:
    • 21a Warawa EJ, Migler BM, Ohnmacht CJ, Needles AL, Gatos GC, McLaren FM, Nelson CL, Kirkland KM. J. Med. Chem. 2001; 44: 372
    • 21b Sibinski R. Cent. Eur. J. Chem. 2012; 10: 232
    • 22a Moreno-Dorado FJ, Guerra FM, Ortega MJ, Zubía E, Massanet GM. Tetrahedron: Asymmetry 2003; 14: 503
    • 22b Branco LC, Afonso CA. M. J. Org. Chem. 2004; 69: 4381
    • 22c Kobayashi S, Endo M, Nagayama S. J. Am. Chem. Soc. 1999; 121: 11229

    • For data on diol 3, see, for example:
    • 22d Huang K, Wang H, Stepanenko V, De Jesús M, Torruellas C, Correa W, Ortiz-Marciales M. J. Org. Chem. 2011; 76: 1883
  • 23 HPLC analyses showed that diol 3 was obtained in low yields. This might have been a consequence of the presence of residual styrene (1) (not analyzed), the long reaction time, or the presence of excess oxidant permitting subsequent transformations of 3, such as glycol cleavage. Our investigation focused on the fate and behavior of the N-oxides.
    • 24a By analogy to: Kang B, Chang S, Decker S, Britton R. Org. Lett. 2010; 12: 1716

    • For data on triol 6, see, for example:
    • 24b Wang Z, Cui Y.-T, Xu Z.-B, Qu J. J. Org. Chem. 2008; 73: 2270
    • 25a By analogy to: Ley SV, Ramarao C, Smith MD. J. Chem. Soc. Chem. Commun. 2001; 2278

    • For data on cinnamaldehyde (7), see, for example:
    • 25b Koenning D, Hiller W, Christmann M. Org. Lett. 2012; 14: 5258

      For the nucleophilicity of piperazine, morpholine, piperidine, and anilines, see:
    • 26a Botzel F, Chu YC, Mayr H. J. Org. Chem. 2007; 72: 3679

    • For the nucleo-philicity of N-methylmorpholine and N-methylpiperidine, see:
    • 26b Phan TB, Brugst M, Mayr H. Angew. Chem. Int. Ed. 2006; 45: 3869 ; Angew. Chem. 2006, 118, 3954
    • 26c Kanzian T, Nigst TA, Maier A, Pichl S, Mayr H. Eur. J. Org. Chem. 2009; 6379
    • 26d Ammer J, Baidya M, Kobayashi S, Mayr H. J. Phys. Org. Chem. 2010; 23: 1029. In the presence of additional protons, the most nucleophilic and most basic position can be blocked (protonated). Oxidation might then be directed towards the N5 (diazepine) and S5 (thiepine) sites, inducing alternative reaction cascades
  • 27 Dragovic S, Gunness P, Ingelman-Sundberg M, Vermeulen NP. E, Commandeur JN. M. Drug Metab. Dispos. 2013; 41: 651
  • 28 For oxidative metabolism of drugs, see: Poraj-Kobielska M, Kinne M, Ullrich R, Scheibner K, Kayser G, Hammel KE, Hofrichter M. Biochem. Pharmacol. 2011; 82: 789
  • 29 The third nucleophilic position in QN might be the dibenzothiepine ring nitrogen center, by analogy to N-alkylation; see: Noskov VG, Kalinina LN, Noskova MN, Kruglyak YL, Strukov OG, Kurochkin VK. Pharm. Chem. J. (Engl. Trans.) 1998; 32: 210

    • Generally, deoxygenation might proceed by demethylation, following a competing pathway. In the presence of a metal oxide (especially Fe2+), a Polonovski-type elimination delivers an iminium salt, the final hydrolysis leads to the well-known desmethylclozapine through elimination of formaldehyde. For related demethylations, see:
    • 30a Schildan A, Schirrmacher R, Samochocki M, Christner C, Maelicke A, Rösch F. J. Labelled Compd. Radiopharm. 2001; 44: 247
    • 30b Rosenau T, Potthast A, Kosma P. Tetrahedron 2002; 58: 9809
    • 30c Herlem D, Martin M.-T, Thal C, Guillou C. Bioorg. Med. Chem. Lett. 2003; 13: 2389
    • 30d Mary A, Renko DZ, Guillou C, Thal C. Tetrahedron Lett. 1997; 38: 5151
  • 31 Because of their less electron-rich dibenzothiepine S-oxide tricyclic cores, ZNSO2 and QNSO2 could be rated as more powerful oxidants in relation to N-oxide deoxygenation than the less-oxidized ZNO and QNO.
  • 32 Furthermore, QNSO2 , as the better oxygen donor, tends to convert QN into QNO as follows: QNSO2  + QNQSO + QNO. The analogous process is possible within the ZN series: ZNSO2  + ZNZSO + ZNO.
  • 33 Two S-oxides have been described; see: DeVane CL, Nemeroff CB. Clin. Pharmacokinet. 2001; 40: 509
  • 34 We succeeded in oxidizing QN directly to QSO in the presence of a hemifumarate buffer. The N4-nitrogen underwent protonation–deactivation, and the oxidation was directed towards the still-nucleophilic sulfur atom; see: Mittapelli V, Vadali L, Sivalakshmi DA, Suryanarayana MV. Rasayan J. Chem. 2010; 3: 677
  • 36 Dain JG, Nicoletti J, Ballard F. Drug Metab. Dispos. 1997; 25: 603
    • 37a Meier J. Br. J. Pharmacol. 1975; 53: 440
    • 37b Jann MW, Lam YW. F, Chang W.-H. Arch. Int. Pharmacodyn. Ther. 1994; 328: 243
    • 37c Pirmohamed M, Williams D, Madden S, Templeton E, Park BK. J. Pharmacol. Exp. Ther. 1995; 272: 984

      CNO and the other N-oxides can act as powerful oxidants and, hence, the parent drugs can be regarded as vehicles of varying efficiency for atomic oxygen. In this way, the current study might contribute to a basic understanding of oxidative effects of the antioxidant clozapine CN, see also:
    • 38a Dalla Libera A, Scutari G, Boscolo R, Rigobello MP, Bindoli A. Free Radical Res. 1998; 29: 151

    • For some examples of reductions, see:
    • 38b Kitamura S, Sugihara K, Tatsumi K. Drug Metab. Dispos. 1998; 27: 92
    • 38c Parte P, Kupfer D. Drug Metab. Dispos. 2005; 33: 1446