Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2014; 46(22): 3033-3040
DOI: 10.1055/s-0034-1378555
DOI: 10.1055/s-0034-1378555
paper
Nickel-Mediated Synthesis of Isoindolinones at Room Temperature
Further Information
Publication History
Received: 15 May 2014
Accepted after revision: 09 July 2014
Publication Date:
21 August 2014 (online)
This article was invited by Erick M. Carreira. �
Abstract
This communication describes a method for the Ni(cod)2-mediated intramolecular arylation of alkyl C−H bonds adjacent to the nitrogen atom in benzamide substrates. The transformation proceeds at room temperature and exhibits selectivity for functionalization of more substituted C−H bonds. The yields of the desired isoindolinone products are higher with benzamide substrates containing tertiary alkyl groups on the nitrogen atom than with those bearing primary or secondary alkyls. The results described herein suggest a mechanism involving radical intermediates for these reactions.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000084.
- Supporting Information
-
References
- 1a Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
- 1b Kakiuchi F, Kochi T. Synthesis 2008; 3013
- 1c McGlacken GP, Bateman LM. Chem. Soc. Rev. 2009; 38: 2447
- 1d Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 1e Ackermann L, Vincente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 1f Bellina F, Rossi R. Tetrahedron 2009; 65: 10269
- 1g Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 1h Daugulis O. Top. Curr. Chem. 2010; 292: 57
- 1i Chiusoli GP, Catellani M, Costa M, Motti E, Della Ca’ N, Maestri G. Coord. Chem. Rev. 2010; 254: 456
- 1j Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
- 1k Rossi R, Bellina F, Lessi M, Manzini C. Adv. Synth. Catal. 2014; 356: 17
- 2a Giri R, Shi B.-F, Engle K.-M, Maguel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
- 2b Jazzar R, Hitse J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
- 2c Wasa M, Engle KM, Yu J.-Q. Isr. J. Chem. 2010; 50: 605
- 2d Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
- 2e Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
- 3 Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
- 4a Wang J, Ferguson DM, Kalyani D. Tetrahedron 2013; 69: 5780
- 4b Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 169
- 5 Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453
- 6a Aihara Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 898
- 6b Li ML, Dong JX, Huang XL, Li KZ, Wu Q, Song FJ, You JS. Chem. Commun. 2014; 50: 3944
- 7 Wertjes WC, Wolfe LC, Waller PW, Kalyani D. Org. Lett. 2013; 15: 5986
- 8a Dastbaravardeh N, Kirchner K, Schnürch M, Mihovilovic MD. J. Org. Chem. 2013; 78: 658
- 8b McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
- 8c Prokopkova H, Bergman SD, Aelvoet K, Smout V, Herrebout W, Van der Veken B, Meerpoel L, Maes BU. W. Chem. Eur. J. 2010; 16: 13063
- 8d Campos KR. Chem. Soc. Rev. 2007; 36: 1069
- 8e Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
- 8f Campos KR, Klapars A, Waldman JH, Dormer PG, Chem CY. J. Am. Chem. Soc. 2006; 128: 3538
- 8g Snieckus V, Cuevas J.-C, Sloan CP. Liu H. T, Curran DP. J. Am. Chem. Soc. 1990; 112: 896
- 9a Buden ME, Guastavino JF, Rossi RA. Org. Lett. 2013; 15: 1174
- 9b Cheng Y, Gu X, Li P. Org. Lett. 2013; 15: 2664
- 10a Rousseaux S, Gorelsky SI, Chung BK. W, Fagnou K. J. Am. Chem. Soc. 2010; 132: 10692
- 10b Rousseaux S, Davi M, Sofack-Kreutzer J, Pierre C, Kefalidis CE, Clot E, Fagnou K, Baudoin O. J. Am. Chem. Soc. 2010; 132: 10706
- 11 Tsou TT, Kochi JK. J. Am. Chem. Soc. 1979; 101: 7547
- 12a Shirakawa E, Hayashi T. Chem. Lett. 2012; 41: 130
- 12b Yanagisawa S, Itami K. ChemCatChem 2011; 3: 827
- 12c Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
- 12d Lei A, Lei W, Liu C, Chen M. Dalton Trans. 2010; 10352
- 13a Liu W, Tian F, Wang X, Yu H, Bi Y. Chem. Commun. 2013; 49: 2983
- 13b Mehta VP, Punji B. RSC Adv. 2013; 11957
- 13c Wu Y, Wong SM, Mao F, Chan TL, Kwong FY. Org. Lett. 2012; 14: 5306
- 13d Bhakuni BS, Kumar A, Balkrishna SJ, Sheikh JA, Konar S, Kumar S. Org. Lett. 2012; 14: 2838
- 13e De S, Ghosh S, Bhunia S, Sheikh JA, Bisai A. Org. Lett. 2012; 14: 4466
- 13f Shirakawa E, Itoh K.-I, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
- 13g Liu W, Cao H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
- 13h Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nature Chem. 2010; 2: 1044
- 14 The mechanism in Scheme 3 is just one proposal. The regeneration of Ni0 in step (v) cannot be excluded amongst other possibilities.
- 15 We have explored the use of phenanthroline in place of Ni(cod)2 for the room temperature arylations described in this paper. Specifically, the reaction of 1-Br or 1-Cl using phenanthroline in place of Ni(cod)2 under otherwise identical conditions showed no product in the GC/MS trace of the crude reaction mixture. Interestingly, the arylation of 1-I using phenanthroline (0.2 equiv), t-BuOK (1.5 equiv), and THF did proceed at room temperature to afford 1a in 80% yield, as determined by GC/MS analysis of the crude reaction mixture against hexadecane as the internal standard. These results suggest that Ni(cod)2 is a more effective initiator for the arylations of bromide and chloride substrates. However, either Ni(cod)2 or phenanthroline could serve as initiator for the reaction of iodide substrates
- 16 Bhakuni BS, Yadav A, Kumar S, Patel S, Sharma S, Kumar S. J. Org. Chem. 2014; 79: 2944
For some recent reviews on C–H functionalization, see:
For other representative reports on sp3 C–H arylation adjacent to nitrogen atoms, see: