Subscribe to RSS
DOI: 10.1055/s-0034-1378893
Synthesis of Novel Fluorescent Stilbenenitrones via a Mild, Ligand-Free Heck-Type Reaction of (E)-[4-(1,3-Dioxolan-2-yl)styryl]trimethylsilane with Benzene Diazonium Tetrafluoroborate Derivatives
Publication History
Received: 04 June 2014
Accepted after revision: 07 July 2014
Publication Date:
06 August 2014 (online)
![](https://www.thieme-connect.de/media/synthesis/201422/lookinside/thumbnails/10.1055-s-0034-1378893-1.jpg)
Abstract
Nitrones are important intermediates in organic syntheses. As spin traps they allow for trapping of short-lived radicals, mainly reactive oxygen species (ROS), under formation of relatively stable nitroxides. Fluorescent nitrones also offer the possibility to follow the formation of ROS with subcellular resolution. To this end, particularly stilbenenitrones have been employed. Here, we describe the synthesis of a series of stilbenenitrones from aldehyde precursors prepared by an optimized, mild Heck-type reaction. Rather unstable benzene diazonium salts required special conditions for the trans-selective reaction with styrylsilanes. Moreover, a new method was developed to produce stilbenenitrones quantitatively in most cases. Ab initio methods were used to clarify an anomaly with respect to absorption behavior.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000084.
- Supporting Information
-
References
- 1 Matsuo J, Shibata T, Kitagawa H, Mukaiyama T. ARKIVOC 2001; (x): 58
- 2 Feuer H. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, Novel Strategies in Synthesis. 2nd ed. Wiley & Sons; Hoboken: 2008: 129
- 3a Dugovič B, Fišera L, Hametner C, Prónayovác N. ARKIVOC 2003; (xiv): 162
- 3b Kinugasa M, Hashimoto S. J. Chem. Soc., Chem. Commun. 1972; 466
- 3c Sciannamea V, Guerrero-Sanchez C, Schubertb US, Catalac J.-M, Jérôme R, Detrembleur C. Polymer 2005; 46: 9632
- 4a Kalai T, Hideg E, Vass I, Hideg K. Free Radical Biol. Med. 1998; 24: 649
- 4b Pou S, Huang YI, Bhan A, Bhadti VS, Hosmane RS, Wu SY, Cao GL, Rosen GM. Anal. Biochem. 1993; 85
- 5 Janzen EG. Acc. Chem. Res. 1971; 31
- 6a Cadenas E, Davies KJ. A. Free Radical Biol. Med. 2000; 29: 222
- 6b Dröge W. Physiol. Rev. 2002; 82: 47
- 6c Inoue M, Sato EF, Nishikawa M, Park A.-M, Kira Y, Imada I, Utsumi K. Curr. Med. Chem. 2003; 10: 2495
- 6d Turrens JF. J. Physiol. 2003; 552: 335
- 7 Pou S, Bhan A, Bhadti VS, Wu SY, Hosmane RS, Rosen GM. FASEB J. 1995; 1085
- 8 Bystryak IM, Likhtenshtein GI, Kotelnikov AI, Hankovsky O, Hideg K. Russ. J. Phys. Chem. 1986; 60: 1679
- 9a Hauck S, Lorat Y, Leinisch F, Trommer WE. Appl. Magn. Reson. 2009; 36: 133
- 9b Reetz MT, de Vries JG. Chem. Commun. 2004; 14: 1559
- 10 Kokorin AI, Hauck S. Nitroxides – Theory, Experiment and Applications . Kokorin AI. InTech; Rrijeka (Croatia): 2012
- 11 Sengupta S, Bhattacharyya S, Sadhukhan SK. J. Chem. Soc., Perkin Trans. 1 1998; 275
- 12a Ikenaga K, Kikukawa K, Matsuda T. J. Chem. Soc., Perkin Trans. 1 1986; 1959
- 12b Kikukawa K, Maemura K, Kiseki Y, Wada F, Matsuda T. J. Org. Chem. 1981; 46: 4885
- 13 Perrin DD, Armarego WL. F. Purification of Laboratory Chemicals . 2nd ed. Pergamon Press; Oxford: 1980
- 14 Gruner M, Pfeifer D, Becker HG. O, Radeglia R, Epperlein J. J. Prakt. Chem. 1985; 327: 63
- 15 Clerici A, Pastori N, Porta O. Tetrahedron 1998; 54: 15679