Aktuelle Rheumatologie 2015; 40(02): 118-123
DOI: 10.1055/s-0035-1545284
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Das Immunsystem der Haut

Skin Immune System
F. Lauffer
1   Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München, München
,
J. Ring
1   Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München, München
2   Christiane Kühne - Center for Allergy, Research and Education (CK-CARE) Davos, Schweiz
› Author Affiliations
Further Information

Publication History

Publication Date:
14 April 2015 (online)

Zusammenfassung

Die Haut bildet die wichtigste Schutzschicht des menschlichen Körpers. Das spezifische Immunsystem der Haut ermöglicht neben einem effektiven Schutz vor Erregern, eine schnelle Wundheilung, ständige Regeneration, sowie eine Toleranzentwicklung gegen harmlose Antigene. In den letzten Jahren konnten spektakuläre Erkenntnisse über das Immunsystem der Haut gewonnen werden: Neue Immunzellen wurden entdeckt, Zellinteraktionen näher verstanden und spezifische Immuntherapien entwickelt. So ist das Verständnis der Dermatoimmunologie oft Vorreiter für Forschung und Fortschritt in vielen anderen Feldern der Medizin.

Abstract

The skin provides the most important barrier against environmental influences. Protection against pathogens, wound healing, regeneration and the development of immune tolerance are main functions of the skin immune system. Over the last years spectacular findings about the skin immune system have been published, e. g., detection of new cell subtypes, a better understanding of cell interactions and the development of specific immune therapies. Therefore research and developments in dermato-immunology often provide the basis for advances in various other areas of medicine.

 
  • Literatur

  • 1 Ring J. Angewandte Allergologie. 3., neu bearb. Aufl., unveränd Nachdr. ed. München: Urban & Vogel; 2007
  • 2 Peiser M, Tralau T, Heidler J et al. Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cellular and molecular life sciences: CMLS 2012; 69: 763-781
  • 3 Lack G, Fox D, Northstone K et al. Avon Longitudinal Study of P, Children Study T. Factors associated with the development of peanut allergy in childhood. The New England journal of medicine 2003; 348: 977-985
  • 4 Ring J, Mohrenschlager M. Allergy to peanut oil–clinically relevant?. Journal of the European Academy of Dermatology and Venereology: JEADV 2007; 21: 452-455
  • 5 Bertelsen RJ, Faeste CK, Granum B et al. Food allergens in mattress dust in Norwegian homes – a potentially important source of allergen exposure. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology 2014; 44: 142-149
  • 6 Sicherer SH, Munoz-Furlong A, Sampson HA. Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: a 5-year follow-up study. The Journal of allergy and clinical immunology 2003; 112: 1203-1207
  • 7 Ring J. Weißbuch Allergie in Deutschland. 3., überarb. und erw. Aufl (ed.). München: Springer Medizin; 2010
  • 8 Gao Z, Tseng CH, Pei Z et al. Molecular analysis of human forearm superficial skin bacterial biota. Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 2927-2932
  • 9 Findley K, Oh J, Yang J et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 2013; 498: 367-370
  • 10 Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence?. The British journal of dermatology 2008; 158: 442-455
  • 11 Kong HH, Oh J, Deming C et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome research 2012; 22: 850-859
  • 12 Tay SS, Roediger B, Tong PL et al. The Skin-Resident Immune Network. Current dermatology reports 2014; 3: 13-22
  • 13 Langerhans P. Ueber die Nerven der menschlichen Haut. Arch Pathol Anatom 1868;
  • 14 Chorro L, Sarde A, Li M et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. The Journal of experimental medicine 2009; 206: 3089-3100
  • 15 Hoeffel G, Wang Y, Greter M et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. The Journal of experimental medicine 2012; 209: 1167-1181
  • 16 Merad M, Manz MG, Karsunky H et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nature immunology 2002; 3: 1135-1141
  • 17 Kanitakis J, Petruzzo P, Dubernard JM. Turnover of epidermal Langerhans’ cells. The New England journal of medicine 2004; 351: 2661-2662
  • 18 Nagao K, Kobayashi T, Moro K et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nature immunology 2012; 13: 744-752
  • 19 Igyarto BZ, Kaplan DH. The evolving function of Langerhans cells in adaptive skin immunity. Immunology and cell biology 2010; 88: 361-365
  • 20 Stingl G, Wolff-Schreiner EC, Pichler WJ et al. Epidermal Langerhans cells bear Fc and C3 receptors. Nature 1977; 268: 245-246
  • 21 Enk AH, Katz SI. Early events in the induction phase of contact sensitivity. The Journal of investigative dermatology 1992; 99: 39S-41S
  • 22 Jakob T, Ring J, Udey MC. Multistep navigation of Langerhans/dendritic cells in and out of the skin. The Journal of allergy and clinical immunology 2001; 108: 688-696
  • 23 Macatonia SE, Edwards AJ, Knight SC. Dendritic cells and the initiation of contact sensitivity to fluorescein isothiocyanate. Immunology 1986; 59: 509-514
  • 24 Streilein JW, Bergstresser PR. Langerhans cell function dictates induction of contact hypersensitivity or unresponsiveness to DNFB in Syrian hamsters. The Journal of investigative dermatology 1981; 77: 272-277
  • 25 Toews GB, Bergstresser PR, Streilein JW. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. Journal of immunology 1980; 124: 445-453
  • 26 Kaplan DH, Jenison MC, Saeland S et al. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 2005; 23: 611-620
  • 27 Igyarto BZ, Jenison MC, Dudda JC et al. Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and langerhans cell-derived IL-10. Journal of immunology 2009; 183: 5085-5093
  • 28 Ng LG, Hsu A, Mandell MA et al. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS pathogens 2008; 4: e1000222
  • 29 Bursch LS, Wang L, Igyarto B et al. Identification of a novel population of Langerin+dendritic cells. The Journal of experimental medicine 2007; 204: 3147-3156
  • 30 Guilliams M, Henri S, Tamoutounour S et al. From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. European journal of immunology 2010; 40: 2089-2094
  • 31 Igyarto BZ, Haley K, Ortner D et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 2011; 35: 260-272
  • 32 Artis D, Kane CM, Fiore J et al. Dendritic cell-intrinsic expression of NF-kappa B1 is required to promote optimal Th2 cell differentiation. Journal of immunology 2005; 174: 7154-7159
  • 33 Murakami R, Denda-Nagai K, Hashimoto S et al. A unique dermal dendritic cell subset that skews the immune response toward Th2. PloS one 2013; 8: e73270
  • 34 Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature reviews Immunology 2008; 8: 958-969
  • 35 Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28: 29-39
  • 36 Kreider T, Anthony RM, Urban Jr JF et al. Alternatively activated macrophages in helminth infections. Current opinion in immunology 2007; 19: 448-453
  • 37 Gratchev A, Guillot P, Hakiy N et al. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scandinavian journal of immunology 2001; 53: 386-392
  • 38 Munitz A, Brandt EB, Mingler M et al. Distinct roles for IL-13 and IL-4 via IL-13 receptor alpha1 and the type II IL-4 receptor in asthma pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 2008; 105: 7240-7245
  • 39 Lucas M, Zhang X, Prasanna V et al. ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus. Journal of immunology 2005; 175: 469-477
  • 40 Oh S, Hwang ES. The role of protein modifications of T-bet in cytokine production and differentiation of T helper cells. Journal of immunology research 2014; 2014: 589672
  • 41 Fletcher JM, Lalor SJ, Sweeney CM et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clinical and experimental immunology 2010; 162: 1-11
  • 42 Maggi E. The TH1/TH2 paradigm in allergy. Immunotechnology: an international journal of immunological engineering 1998; 3: 233-244
  • 43 Ring J, Przybilla B, Ruzicka T. Handbook of Atopic Eczema. In: Second Edition Berlin, Heidelberg: Springer-Verlag; Berlin Heidelberg 2006
  • 44 Ring J. Neurodermitis Atopisches Ekzem. In. 1. Aufl. ed. [s.l.]: Georg Thieme Verlag KG; 2012
  • 45 Korn T, Bettelli E, Oukka M et al. IL-17 and Th17 Cells. Annual review of immunology 2009; 27: 485-517
  • 46 Zaba LC, Fuentes-Duculan J, Eungdamrong NJ et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. The Journal of investigative dermatology 2009; 129: 79-88
  • 47 Eyerich S, Eyerich K, Pennino D et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. The Journal of clinical investigation 2009; 119: 3573-3585
  • 48 Kisielow J, Kopf M, Karjalainen K. SCART scavenger receptors identify a novel subset of adult gammadelta T cells. Journal of immunology 2008; 181: 1710-1716
  • 49 Pantelyushin S, Haak S, Ingold B et al. Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. The Journal of clinical investigation 2012; 122: 2252-2256
  • 50 Eyerich S, Onken AT, Weidinger S et al. Mutual antagonism of T cells causing psoriasis and atopic eczema. The New England journal of medicine 2011; 365: 231-238
  • 51 Spits H, Artis D, Colonna M et al. Innate lymphoid cells – a proposal for uniform nomenclature. Nature reviews Immunology 2013; 13: 145-149
  • 52 Kim BS, Siracusa MC, Saenz SA et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Science translational medicine 2013; 5: 170ra16
  • 53 McAllister F, Henry A, Kreindler JL et al. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. Journal of immunology 2005; 175: 404-412
  • 54 Ye P, Rodriguez FH, Kanaly S et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. The Journal of experimental medicine 2001; 194: 519-527
  • 55 da Silva EZ, Jamur MC, Oliver C. Mast Cell Function: A New Vision of an Old Cell. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society 2014;
  • 56 Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nature medicine 2012; 18: 693-704
  • 57 Brockow K. Epidemiology, prognosis, and risk factors in mastocytosis. Immunology and allergy clinics of North America 2014; 34: 283-295
  • 58 Lu LF, Lind EF, Gondek DC et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006; 442: 997-1002