Thromb Haemost 2003; 89(03): 530-537
DOI: 10.1055/s-0037-1613384
Vascular Development and Vessel Remodelling
Schattauer GmbH

Insights in the molecular mechanisms of the anti-angiogenic effect of an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase

Loïc Vincent
1   Laboratoire de Différenciation Hématopoïétique (DIFEMA), Faculté de Médecine et Pharmacie, Rouen, France
,
Patricia Albanese
2   Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 506, Hôpital Paul Brousse, Villejuif, France
,
Heidi Bompais
2   Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 506, Hôpital Paul Brousse, Villejuif, France
,
Georges Uzan
2   Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 506, Hôpital Paul Brousse, Villejuif, France
,
Jean Pierre Vannier
1   Laboratoire de Différenciation Hématopoïétique (DIFEMA), Faculté de Médecine et Pharmacie, Rouen, France
,
Philippe Gabriel Steg
3   Service de Cardiologie, Groupe Hospitalier Bichat-Claude Bernard, Paris, France
,
Jeannette Soria
4   Laboratoire de Biochimie et Equipe Mixte INSERM 99-12, Hôtel-Dieu, Paris, France
,
Claudine Soria
1   Laboratoire de Différenciation Hématopoïétique (DIFEMA), Faculté de Médecine et Pharmacie, Rouen, France
5   INSERM Unité 553, Hôpital Saint Louis, Paris, France
› Author Affiliations
Further Information

Publication History

Received 17 June 2002

Accepted after resubmission 18 November 2002

Publication Date:
09 December 2017 (online)

Summary

3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) reduce the risk of coronary event by cholesterol-lowering dependent and independent mechanisms. We have already described that the inhibitory effect of cerivastatin on angiogenesis contribute to the cholesterol-independent beneficial effect and was due to the inhibition of the cell signaling cascade RhoA/FAK/Akt. In this study, new insights in the molecular mechanism of action were provided. It indicates an inhibition of exposure of alpha V beta 3 integrin on cell membrane and a modification of gene expression. The inhibition of angiogenesis could be related to 1) an increase in genes involved in the inhibition of cell proliferation (p19INK4, p21Waf/Cip1, Wnt-5a), the inhi bition of cell migration (Rho-GDI 1, α E-catenin) and 2) a downregulation of genes involved in angiogenesis (PAI-1, Vitronectin, HoxD3, Notch4) or in cell invasion (Semaphorin E). In addition, DNA repair protein genes (MLH1, XRCC1) were increased.

This study may indicate new biological interest of genes involved in angiogenesis control.

 
  • References

  • 1 Bellosta S, Ferri N, Bernini F, Paoletti R, Corsini A. Non-lipid-related effects of statins. Ann Med 2000; 32: 164-76.
  • 2 Axel I D, Riessen R, Runge H, Viebahn R, Karsch KR. Effects of cerivastatin on human arterial smooth muscle cell proliferation and migration in transfilter cocultures. J Cardiovasc Pharmacol 2000; 35: 619-29.
  • 3 Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K. The HMGCoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 2000; 6: 1004-10.
  • 4 Urbich C, Dernbach E, Zeiher AM, Dimmeler S. Double-edged role of statins in angiogenesis signalling. Circ res 2002; 90: 737-44.
  • 5 Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovasculrarization. J Clin Invest 1999; 103: 1231-6.
  • 6 Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogene-sis). J Pathol 2000; 190: 338-42.
  • 7 Vincent L, Chen W, Hong L, Mirshahi F, Mishal Z, Mirshahi-Khorassani T, Vannier JP, Soria J, Soria C. Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: contribution to its anti-angiogenic effect. Febs lett 2001; 495: 159-66.
  • 8 Vincent L, Soria C, Mirshahi F, Opolon P, Mishal Z, Vannier JP, Soria J, Hong L. Cerivastatin, an inhibitor of 3-hydroy-3-methylglutaryl CoenzymeA reductase, inhibits endothelial cell proliferation induced by angiogenic factors in vitro and angiogenesis in in vivo models. Arterioscler Thomb Vasc Biol 2002; 22: 623-9.
  • 9 Weis M, Heeschen C, Glassford AJ, Cooke JP. Statins Have Biphasic Effects on Angiogenesis. Circulation 2002; 105: 739-45.
  • 10 Dangas G, Smith DA, Unger AH. et al Pravastatin: an antithrombotic effect independent of the cholesterol-lowering effect. Thromb Haemost 2000; 83: 688-92.
  • 11 Vaughan CJ, Murphy MB, Buckley BM. Statins do more than just lower cholesterol. Lancet 1996; 348: 1079-82.
  • 12 Groszek E, Grundy SM. The possible role of the arterial microcirculation in the pathogenesis of atherosclerosis. J Chronic Dis 1980; 33: 679-84.
  • 13 Jeziorska M, Woolley DE. Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries. J Pathol 1999; 188: 189-96.
  • 14 Lee RT, Libby P. The instable atheroma. Arterioscler Thromb Vasc Biol 1997; 17: 1859-67.
  • 15 McCarthy MJ, Loftus IM, Thompson MM, Jones L, London NJ, Bell PR, Naylor AR, Brindle NP. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg 1999; 30: 261-8.
  • 16 Kurata T, Kurata M, Okada T. Cerivastatin induces carotid artery plaque stabilization independently of cholesterol lowering in patients with hypercholesterolaemia. J Int Med Res 2001; 294: 329-34.
  • 17 Elson CE, Peffley DM, Hentosh P, Mo H. Isoprenoid-mediated inhibition of mevalonate synthesis: potential application to cancer. Proc Soc Exp Biol Med 1999; 221: 294-311.
  • 18 Yoshida Y, Kawata M, Katayama M, Horiuchi H, Kita Y, Takai Y. A geranylgeranyltransferase for rhoA p21 distinct from the farnesyltransferase for Ras p21S. Biochem Biophys Res Commun 1991; 175: 720-8.
  • 19 Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 2002; 8: 27-34.
  • 20 Testaz S, Delannet M, Duband J. Adhesion and migration of avian neural crest cells on fibronectin require the cooperating activities of multiple integrins of the (beta)1 and (beta)3 families. J Cell Sci 1999; 112: 4715-28.
  • 21 Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ. HMEC-1s: establishment of an immortalized human endothelial cell line. J Invest Dermatol 1992; 99: 683-90.
  • 22 Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 1976; 72: 248-50.
  • 23 Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 1995; 15: 2672-81.
  • 24 Olson DJ, Papkoff J. Regulated expression of Wnt family members during proliferation of C57mg mammary cells. Cell Growth Differ 1994; 5: 197-206.
  • 25 Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 1993; 119: 97-111.
  • 26 Jonsson M, Smith K, Harris AL. Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton. Br J Cancer 1998; 78: 430-8.
  • 27 Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 1999; 11: 545-54.
  • 28 Leffers H, Nielsen MS, Andersen AH, Honore B, Madsen P, Vandekerckhove J, Celis JE. Identification of two human Rho GDP dissociation inhibitor proteins whose overexpression leads to disruption of the actin cytoskeleton. Exp Cell Res 1993; 209: 165-74.
  • 29 Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70: 389-99.
  • 30 Giannini AL, Vivanco M, Kypta RM. Alpha-catenin inhibits beta-catenin signaling by preventing formation of a beta-catenin*T-cell factor*DNA complex. J Biol Chem 2000; 275: 21883-8.
  • 31 Gimond C, van Der Flier A, van Delft S, Brakebusch C, Kuikman I, Collard JG, Fassler R, Sonnenberg A. Induction of cell scattering by expression of beta1 integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function. J Cell Biol 1999; 147: 1325-40.
  • 32 Hardman RA, Afshari CA, Barrett JC. Involvement of mammalian MLH1 in the apoptotic response to peroxide-induced oxidative stress. Cancer Res 2001; 61: 1392-7.
  • 33 Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157-64.
  • 34 Jones CB, McIntosh J, Huang H, Graytock A, Hoyt DG. Regulation of bleomycin-induced DNA breakage and chromatin structure in lung endothelial cells by integrins and poly(ADP-ribose) polymerase. Mol Pharmacol 2001; 59: 69-75.
  • 35 Wiesbauer F, Kaun C, Zorn G, Maurer G, Huber K, Wojta J. HMG CoA reductase inhibitors affect the fibrinolytic system of human vascular cells in vitro: a comparative study using different statins. Br J Pharmacol 2002; 135: 284-92.
  • 36 Bajou K, Masson V, Gerard RD, Schmitt PM, Albert V, Praus M, Lund LR, Frandsen TL, Brunner N, Dano K, Fusenig NE, Weidle U, Carmeliet G, Loskutoff D, Collen D, Carmeliet P, Foidart JM, Noel A. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for anti-angiogenic strategies. J Cell Biol 2001; 152: 777-84.
  • 37 Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 1996; 383: 441-3.
  • 38 Eatock MM, Schatzlein A, Kaye SB. Tumour vasculature as a target for anticancer therapy. Cancer Treat Rev 2000; 26: 191-204.
  • 39 Boudreau N, Andrews C, Srebrow A, Ravan-pay A, Cheresh DA. Induction of the angiogenic phenotype by Hox D3. J Cell Biol 1997; 139: 257-64.
  • 40 Myers C, Charboneau A, Boudreau N. Homeobox B3 promotes capillary morpho-genesis and angiogenesis. J Cell Biol 2000; 148: 343-51.
  • 41 Uyttendaele H, Ho J, Rossant J, Kitajewski J. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci USA 2001; 98: 5643-8.
  • 42 Uyttendaele H, Closson V, Wu G, Roux F, Weinmaster G, Kitajewski J. Notch4 and Jagged-1 induce microvessel differentiation of rat brain endothelial cells. Microvasc Res 2000; 60: 91-103.
  • 43 Martin-Satue M, Blanco J. Identification of semaphorin E gene expression in metastatic human lung adenocarcinoma cells by mRNA differential display. J Surg Oncol 1999; 72: 18-23.
  • 44 Dell’Era P, Coco L, Ronca R, Sennino B, Presta M. Gene expression profile in fibroblast growth factor 2-transformed endothelial cells. Oncogene 2002; 21: 2433-40.
  • 45 Jih YJ, Lien WH, Tsai WC, Yang GW, Li C, Wu LW. Distinct regulation of genes by bFGF and VEGF-A in endothelial cells. Angiogenesis 2001; 4: 313-21.
  • 46 Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264: 569-71.
  • 47 Eliceiri BP, Cheresh DA. The role of integrins during angiogenesis: insights in the potential mechanisms of action and clinical development. J Cell Investig 1999; 103: 1227-30.
  • 48 Kumar CC, Malkowski M, Yin Z, Tanghetti E, Yaremko B, Nechuta T, Varner J, Liu M, Smith EM, Neustadt B, Presta M, Armstrong L. Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta3 and alpha(v)beta5 integrin receptor antagonist. Cancer Res 2001; 61: 2232-8.
  • 49 Zheng DQ, Woodard AS, Tallini G, Languino LR. Substrate specificity of alpha(v)beta(3) integrin-mediated cell migration and phosphatidylinositol 3-kinase/AKT pathway activation. J Biol Chem 2000; 275: 24565-74.
  • 50 Tanghetti E, Ria R, Dell’Era P, Urbinati C, Rusnati M, Ennas MG, Presta M. Biological activity of substrate-bound basic fibroblast growth factor (FGF2): recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene 2002; 21: 3889-97.