Kinder- und Jugendmedizin 2007; 7(01): 39-44
DOI: 10.1055/s-0037-1617943
Immunologie
Schattauer GmbH

Wiskott-Aldrich-Syndrom am Beispiel eines Patienten

Klinische, hämatologische, molekulargenetische und immunologische BefundeSevere clinical course of Wiskott-Aldrich-syndromeclinical course, hematologic, immunologic and genetic findings
Corinna M. Gebauer
1   Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig (Direktor: Prof. Dr. med. Wieland Kiess)
,
Harald Lenk
1   Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig (Direktor: Prof. Dr. med. Wieland Kiess)
,
Wilhelm Friedrich
2   Universitätklinik und Poliklinik für Kinder- und Jugendmedizin Ulm (Direktor: Prof. Dr. med. Klaus-Michael Debatin)
,
Ulrich Sack
3   Institut für Klinische Immunologie und Transfusionsmedizin, Universität Leipzig (Leiter: Prof. Dr. med. Frank Emmrich)
,
Volker Schuster
1   Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig (Direktor: Prof. Dr. med. Wieland Kiess)
› Author Affiliations
Further Information

Publication History

Eingegangen: 08 September 2005

angenommen: 30 September 2005

Publication Date:
11 January 2018 (online)

Zusammenfassung

Das Wiskott-Aldrich-Syndrom (WAS) gehört zur Gruppe der X-chromosomal gekoppelten primären Immundefektsyndrome und ist charakterisiert durch kongenitale Mikrothrombozytopenie, rekurrierende schwere Infektionen, kombinierte zelluläre und humorale Abwehrschwäche, Ekzem, Malignome und Autoimmunkrankheiten.

Es werden der klinische Verlauf, die hämatologischen, immunologischen und molekulargenetischen Befunde eines Jungen mit schwerem Verlauf eines WAS beschrieben. Neben der charakteristischen Mikrothrombozytopenie war die Thrombozytenfunktion stark beeinträchtigt, die Anzahl der CD3+-T-Zellen erniedrigt, die der CD16+/CD56+-NK-Zellen erhöht. Molekulargenetisch zeigte sich eine bisher nicht beschriebene Spleißstellenmutation im Bereich des Introns 3 des WASP-Gens (IVS3+2t>a). Wir konnten bei dem Patienten zeigen, dass die intrazytoplasmatische γ-Interferon-Bildung in T-Zellen signifikant erhöht ist. Nach einer zunächst erfolgreichen allogenen Stammzelltransplantation starb der Junge an den Komplikationen einer CMV-Pneumonie.

Das WAS ist ein komplexes Krankheitsbild. Der Nachweis einer Mikrothrombozytopenie bei einem Knaben ist immer verdächtig und diagnostisch wegweisend für diese Erkrankung.

Summary

The Wiskott-Aldrich syndrome (WAS) is one of the X-linked immunodeficiency diseases and is characterized by congenital microthrombocytopenia, recurrent infections, combined cellular and humoral immunodeficiency, eczema, malignancies and autoimmune manifestations.

We describe the clinical course, hematologic, immunologic and genetic findings in a patient with a novel splice-site mutation in the WASP gene localized at intron 3 (IVS3+2t>a). The patient exhibited typical microthrombocytopenia, functions of thrombocytes were impaired. CD3+T cells were decreased, CD16+/CD56+ natural killer cells were markedly increased. We found that T cells of the patients showed an increased intracytoplasmic γ-interferon production. Stem cell transplantation from a CMV seropositive allogeneic donor was performed. The boy died after successful initial engraftment due to severe CMV-pneumonia despite antiviral therapy.

WAS is a complex disorder. The demonstration of microthrombocytopenia in male infants is highly suspicious and diagnostic for this rare disease.

 
  • Literatur

  • 1 Azuma H, Sakata H, Saijyou M, Okuno A. Effect of interleukin 2 on intractable herpes virus infection and chronic eczematoid dermatitis in a patient with Wiskott-Aldrich syndrome. Eur J Pediatr 1993; 152: 998-1000.
  • 2 Azuma T, Takahashi S, Kawamura A. Preoperative autologous blood donation in hip surgeries. Transfus Sci 2000; 23: 177-81.
  • 3 Brickell PM, Katz DR, Thrasher AJ. Wiskott-Aldrich syndrome: current research concepts. Br J Haematol 1998; 101: 603-8.
  • 4 Dupuis-Girod S, Medioni J, Haddad E. et al. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a singlecenter cohort of 55 patients. Pediatrics 2003; 111: e622-7.
  • 5 Filipovich AH, Stone JV, Tomany SC. et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood 2001; 97: 1598-603.
  • 6 Gismondi A, Cifaldi L, Mazza C. et al. Impaired natural and CD16-mediated NK cell cytotoxicity in patients with WAS and XLT: ability of IL-2 to correct NK cell functional defect. Blood 2004; 104: 436-43.
  • 7 Hügle B, Suchowerskyi P, Hellebrand H. et al. Persistent hypogammaglobulinemia following mononucleosis in boys is highly suggestive of X-linked lymphoporliferative disease – report of three cases. J Clin Immunol 2004; 24 (05) 515-22.
  • 8 Imai K, Morio T, Zhu Y. et al. Clinical course of patients with WASP gene mutations. Blood 2004; 103: 456-64.
  • 9 Imai K, Nonoyama S, Ochs HD. WASP (Wiskott-Aldrich syndrome protein) gene mutations and phenotype. Curr Opin Allergy Clin Immunol 2003; 3: 427-36.
  • 10 Lemahieu V, Gastier JM, Francke U. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes. Hum Mutat 1999; 14: 54-66.
  • 11 Morio T, Takase K, Okawa H. et al. The increase of non-MHC-restricted cytotoxic cells (gamma/delta-TCR-bearing T cells or NK cells) and the abnormal differentiation of B cells in Wiskott-Aldrich syndrome. Clin Immunol Immunopathol 1989; 52: 279-90.
  • 12 North ME, Webster AD, Farrant J. Primary defect in CD8+ lymphocytes in the antibody deficiency disease (common variable immunodeficiency): abnormalities in intracellular production of interferon-gamma (IFN-gamma) in CD28+ (‘cytotoxic’) and CD28-(‘suppressor’) CD8+ subsets. Clin Exp Immunol 1998; 111: 70-5.
  • 13 Ochs H, Rosen F. The Wiskott-Aldrich syndrome. In Ochs HD SC, Puck J. (eds). Primary immunodeficiency diseases, a molecular and genetic approach. New York, Oxford: Oxford University Press; 1999: 292-305.
  • 14 Ochs HD. The Wiskott-Aldrich syndrome. Isr Med Assoc J 2002; 4: 379-84.
  • 15 Oda A, Ochs HD. Wiskott-Aldrich syndrome protein and platelets. Immunol Rev 2000; 178: 111-17.
  • 16 Park JY, Kob M, Prodeus AP. et al. Early deficit of lymphocytes in Wiskott-Aldrich syndrome: possible role of WASP in human lymphocyte maturation. Clin Exp Immunol 2004; 136: 104-10.
  • 17 Schuster V, Böhler T, Klein C. Wiskott-Aldrich-Syndrom (WAS). Allergologie 2004; 184-8.
  • 18 Semple JW, Siminovitch KA, Mody M. et al. Flow cytometric analysis of platelets from children with the Wiskott-Aldrich syndrome reveals defects in platelet development, activation and structure. Br J Haematol 1997; 97: 747-54.
  • 19 Shcherbina A, Rosen FS, Remold-O’Donnell E. Pathological events in platelets of Wiskott-Aldrich syndrome patients. Br J Haematol 1999; 106: 875-83.
  • 20 Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr 1994; 125: 876-85.
  • 21 Thrasher AJ, Kinnon C. The Wiskott-Aldrich syndrome. Clin Exp Immunol 2000; 120: 2-9.
  • 22 Zhu Q, Zhang M, Blaese RM. et al. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood 1995; 86: 3797-804.