Osteologie 2016; 25(02): 62-68
DOI: 10.1055/s-0037-1619003
Osteocyte: Morphology & Function
Schattauer GmbH

Endocrine function of osteocytes

Die endokrine Funktion der Osteozyten
T. Yorgan
1   Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
,
T. Schinke
1   Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
› Author Affiliations
Further Information

Publication History

received: 23 February 2016

accepted after revision: 22 March 2016

Publication Date:
22 December 2017 (online)

Summary

Osteocytes represent the most abundant cell type of the skeletal system. They have access to a large cellular surface area within the lacuno-canalicular network. This network additionally provides connection to the vascular system, a prerequisite for secretion of endocrine regulators into the circulation. The best established endocrine function of the osteocyte network is the regulation of phosphate homeostasis by secretion of Fgf23, a hormone inhibiting renal phosphate reabsorption. Recently, several additional osteocyte-derived factors have been suggested to influence phosphate homeostasis, either directly or in an Fgf23-dependent manner. Moreover, osteocytes are also the major producers of Wnt signaling modulators, such as Sclerostin or Dkk1. Since these molecules primarily act as inhibitors of bone formation, there might be an additional influence of osteocyte-derived molecules on glucose handling and energy metabolism. In fact, osteocalcin, a long-known bone matrix protein and biomarker of bone formation, is now considered to act as a hormone controlling insulin production by pancreatic β-cells and insulin sensitivity of target organs. Since the endocrine functions of osteocytes are only beginning to be uncovered, it appears likely that additional osteocyte-derived molecules with systemic influences on whole body homeostasis might be identified in the future.

Zusammenfassung

Osteozyten sind über das lakuno-kanalikuläre Netzwerk mit dem vaskulären System verbunden, wodurch die Grundvoraussetzung für die Sekretion endokriner Regulatoren gegeben ist. Die am besten etablierte endokrine Funktion des Osteozyten-Netzwerks ist die Regulation der Phosphat-Homöostase durch die Sezernierung von Fgf23, einem Hormon, das u. a. die renale Phosphat-Resorption inhibiert. Zudem wurden weitere Faktoren osteozytären Ursprungs identifiziert, welche die Phosphat-Homöostase direkt oder Fgf23-abhängig beeinflussen. Des Weiteren bilden Osteozyten auch Modulatoren der Wnt-Signaltransduktion, z. B. Sklerostin oder Dkk1. Da diese Moleküle als Inhibitoren der Knochenbildung wirken, könnte ein zusätzlicher Einfluss von Osteozyten auf den Glukose- und Energiestoffwechsel vorhanden sein. In der Tat gibt es Hinweise darauf, dass die Insulinproduktion im Pankreas sowie die Insulinsensitivität peripherer Organe durch Osteokalzin, einem Marker der Knochenbildung, reguliert werden. Somit ist es nicht unwahrscheinlich, dass zukünftig weitere Moleküle osteozytären Ursprungs entdeckt werden, die einen systemischen Einfluss auf die Homöostase des Gesamtorganismus haben.

 
  • References

  • 1 Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone 2015; 75: 144-150. [Epub 2015/02/25].
  • 2 Knothe MLTate, Adamson JR, Tami AE, Bauer TW. The osteocyte. Int J Biochem Cell Biol 2004; 36 (01) 1-8. [Epub 2003/11/01].
  • 3 Sun Q, Gu Y, Zhang W. et al. Ex vivo 3D osteocyte network construction with primary murine bone cells. Bone Res 2015; 03: 15026. [Epub 015/10/01].
  • 4 Bonewald LF. The amazing osteocyte. J Bone Miner Res 2011; 26 (02) 229-238. [Epub 2011/01/22].
  • 5 Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int 2014; 94 (01) 25-34. [Epub 2013/09/05].
  • 6 Fritton SP, Weinbaum S. Fluid and Solute Transport in Bone: Flow-Induced Mechanotransduction. Annu Rev Fluid Mech 2009; 41: 347-374. [Epub 2010/01/15].
  • 7 Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell. and more. Endocr Rev 2013; 34 (05) 658-690. [Epub 2013/04/25].
  • 8 Rowe PS. A unified model for bone-renal mineral and energy metabolism. Curr Opin Pharmacol 2015; 22: 64-71. [Epub 2015/04/17].
  • 9 The HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet 1995; 11 (02) 130-136. [Epub 1995/10/01].
  • 10 ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26 (03) 345-348. [Epub 2000/11/04].
  • 11 Feng JQ, Ward LM, Liu S. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006; 38 (11) 1310-1315. [Epub 2006/10/13].
  • 12 Shimada T, Mizutani S, Muto T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 2001; 98 (11) 6500-6505. [Epub 2001/05/10].
  • 13 Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 2010; 61: 91-104. [Epub 2010/01/12].
  • 14 Kemper B, Habener JF, Rich A, Potts Jr JT. Parathyroid secretion: discovery of a major calciumdependent protein. Science 1974; 184 (4133): 167-169. [Epub 1974/04/12].
  • 15 Christakos S, Dhawan P, Verstuyf A. et al. Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96 (01) 365-408. [Epub 2015/12/19].
  • 16 Meyer Jr RA, Meyer MH, Gray RW. Parabiosis suggests a humoral factor is involved in X-linked hypophosphatemia in mice. J Bone Miner Res 1989; 04 (04) 493-500. [Epub 1989/08/01].
  • 17 Nesbitt T, Coffman TM, Griffiths R, Drezner MK. Crosstransplantation of kidneys in normal and Hyp mice. Evidence that the Hyp mouse phenotype is unrelated to an intrinsic renal defect. J Clin Invest 1992; 89 (05) 1453-1459. [Epub 1992/05/01].
  • 18 Tenenhouse HS, Beck L. Renal Na(+)-phosphate cotransporter gene expression in Xlinked Hyp and Gy mice. Kidney Int 1996; 49 (04) 1027-1032. [Epub 1996/04/01].
  • 19 Liu S, Zhou J, Tang W. et al. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 2006; 291 (01) E38-E49. [Epub 2006/02/02].
  • 20 Ichikawa S, Imel EA, Kreiter ML. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Musculoskelet Neuronal Interact 2007; 07 (04) 318-319. [Epub 2007/12/21].
  • 21 Gattineni J, Bates C, Twombley K, Dwarakanath V. et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 2009; 297 (02) F282-F291. [Epub 2009/06/12].
  • 22 Shimada T, Kakitani M, Yamazaki Y. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113 (04) 561-568. [Epub 2004/02/18].
  • 23 Chefetz I, Heller R, Galli-Tsinopoulou A. et al. A novel homozygous missense mutation in FGF23 causes Familial Tumoral Calcinosis associated with disseminated visceral calcification. Hum Genet 2005; 118 (02) 261-266. [Epub 2005/09/10].
  • 24 Aono Y, Yamazaki Y, Yasutake J. et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res 2009; 24 (11) 1879-1888. [Epub 2009/05/08].
  • 25 Shimada T, Fukumoto S. FGF23 as a novel therapeutic target. Adv Exp Med Biol 2012; 728: 158-10. [Epub 2012/03/08].
  • 26 Bowe AE, Finnegan R, Jan de Beur SM. et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001; 284 (04) 977-981. [Epub 2001/06/21].
  • 27 Liu S, Guo R, Simpson LG. et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 2003; 278 (39) 37419-37426. [Epub 2003/07/23].
  • 28 Benet-Pages A, Lorenz-Depiereux B, Zischka H. et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004; 35 (02) 455-462. [Epub 2004/07/23].
  • 29 Seitz S, Rendenbach C, Barvencik F. et al. Retinol deprivation partially rescues the skeletal mineralization defects of Phex-deficient Hyp mice. Bone 2013; 53 (01) 231-238. [Epub 2012/12/26].
  • 30 Beck L, Soumounou Y, Martel J. et al. Pex/PEX tissue distribution and evidence for a deletion in the 3’ region of the Pex gene in Xlinked hypophosphatemic mice. J Clin Invest 1997; 99 (06) 1200-1209. [Epub 1997/03/15].
  • 31 Liu S, Rowe PS, Vierthaler L. et al. Phosphorylated acidic serineaspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. J Endocrinol 2007; 192 (01) 261-267. [Epub 2007/01/11].
  • 32 Martin A, David V, Laurence JS. et al. Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 2008; 149 (04) 1757-1772. [Epub 2007/12/29].
  • 33 Rowe PS, Garrett IR, Schwarz PM. et al. Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 2005; 36 (01) 33-46. [Epub 2005/01/25].
  • 34 Rowe PS. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct 2012; 30 (05) 355-375. [Epub 2012/05/11].
  • 35 Barros NM, Hoac B, Neves RL. et al. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res 2013; 28 (03) 688-699. [Epub 2012/09/20].
  • 36 Martin A, Liu S, David V. et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth fac-tor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J 2011; 25 (08) 2551-2562. [Epub 2011/04/22].
  • 37 Addison WN, Nakano Y, Loisel T. et al. MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 2008; 23 (10) 1638-1649. [Epub 2008/07/04].
  • 38 Zelenchuk LV, Hedge AM, Rowe PS. SPR4-peptide alters bone metabolism of normal and HYP mice. Bone 2015; 72: 23-33. [Epub 2014/12/03].
  • 39 Ecarot B, Glorieux FH, Desbarats M. et al. Travers R, Labelle L. Defective bone formation by Hyp mouse bone cells transplanted into normal mice: evidence in favor of an intrinsic osteoblast defect. J Bone Miner Res 1992; 07 (02) 215-220. [Epub 1992/02/01].
  • 40 Xiao ZS, Crenshaw M, Guo R. et al. Intrinsic mineralization defect in Hyp mouse osteoblasts. Am J Physiol 1998; 275 (4 Pt 1): E700-E708. [Epub 1998/10/01].
  • 41 Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal recessive hypophosphatemic rickets. Am J Hum Genet 2010; 86 (02) 267-272. [Epub 2010/02/09].
  • 42 Harmey D, Hessle L, Narisawa S. et al. Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 2004; 164 (04) 1199-1209. [Epub 2004/03/25].
  • 43 Jain A, Fedarko NS, Collins MT. et al. Serum levels of matrix extracellular phosphoglycoprotein (MEPE) in normal humans correlate with serum phosphorus, parathyroid hormone and bone mineral density. J Clin Endocrinol Metab 2004; 89 (08) 4158-4161. [Epub 2004/08/05].
  • 44 Dobbie H, Unwin RJ, Faria NJ, Shirley DG. Matrix extracellular phosphoglycoprotein causes phosphaturia in rats by inhibiting tubular phosphate reabsorption. Nephrol Dial Transplant 2008; 23 (02) 730-733. [Epub 2007/11/27].
  • 45 Berndt T, Craig TA, Bowe AE. et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest 2003; 112 (05) 785-794. [Epub 2003/09/04].
  • 46 Xiong J, Onal M, Jilka RL. et al. Matrixembedded cells control osteoclast formation. Nat Med 2011; 17 (10) 1235-1241. [Epub 2011/09/13].
  • 47 Nakashima T, Hayashi M, Fukunaga T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 2011; 17 (10) 1231-1234. [Epub 2011/09/13].
  • 48 Winkler DG, Sutherland MK, Geoghegan JC. et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 2003; 22 (23) 6267-6276. [Epub 2003/11/25].
  • 49 Balemans W, Ebeling M, Patel N. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 2001; 10 (05) 537-543. [Epub 2001/02/22].
  • 50 Balemans W, Patel N, Ebeling M. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 2002; 39 (02) 91-97. [Epub 2002/02/12].
  • 51 Li X, Ominsky MS, Niu QT. et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 2008; 23 (06) 860-869. [Epub 2008/02/14].
  • 52 Li X, Zhang Y, Kang H. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 2005; 280 (20) 19883-19887. [Epub 2005/03/22].
  • 53 Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 2005; 280 (29) 26770-26775. [Epub 2005/05/24].
  • 54 Ellies DL, Viviano B, McCarthy J. et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res 2006; 21 (11) 1738-1749. [Epub 2006/09/28].
  • 55 Yorgan TA, Schinke T. Relevance of Wnt signaling for osteoanabolic therapy. Mol Cell Ther 2014; 02: 22. [Epub 2014/01/01].
  • 56 Boyden LM, Mao J, Belsky J. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346 (20) 1513-1521. [Epub 2002/05/17].
  • 57 Yorgan TA, Peters S, Jeschke A. et al. The Anti-Osteoanabolic Function of Sclerostin Is Blunted in Mice Carrying a High Bone Mass Mutation of Lrp5. J Bone Miner Res 2015; 30 (07) 1175-1183. [Epub 2015/02/03].
  • 58 McClung MR, Grauer A, Boonen S. et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 2014; 370 (05) 412-420. [Epub 2014/01/03].
  • 59 Gundberg CM, Lian JB, Booth SL. Vitamin K-dependent carboxylation of osteocalcin: friend or foe?. Adv Nutr 2012; 03 (02) 149-157. [Epub 2012/04/21].
  • 60 Lee NK, Sowa H, Hinoi E. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130 (03) 456-469. [Epub 2007/08/19].
  • 61 Ferron M, Wei J, Yoshizawa T. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010; 142 (02) 296-308. [Epub 2010/07/27].
  • 62 Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res 2011; 26 (07) 1680-1683. [Epub 2011/03/23].
  • 63 Booth SL, Centi A, Smith SR, Gundberg C. The role of osteocalcin in human glucose metabolism: marker or mediator?. Nat Rev Endocrinol 2013; 09 (01) 43-55. [Epub 2012/11/14].
  • 64 Liu C, Wo J, Zhao Q. et al. Association between Serum Total Osteocalcin Level and Type 2 Diabetes Mellitus: A Systematic Review and MetaAnalysis. Horm Metab Res 2015; 47 (11) 813-819. [Epub 2015/09/16].
  • 65 Oury F, Sumara G, Sumara O, et al. Ferron M, Chang H, Smith CE. et al. Endocrine regulation of male fertility by the skeleton. Cell 2011; 144 (05) 796-809. [Epub 2011/02/22].
  • 66 Oury F, Khrimian L, Denny CA. et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 2013; 155 (01) 228-241. [Epub 2013/10/01].
  • 67 Wei J, Shimazu J, Makinistoglu MP. et al. Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation. Cell 2015; 161 (07) 1576-1591. [Epub 2015/06/20].