Osteologie 2010; 19(02): 117-121
DOI: 10.1055/s-0037-1619931
Sexualhormone und Knochenstoffwechsel
Schattauer GmbH

Androgene und Androgenmangel bei Tiermodellen der Osteoporose

Androgens and androgen deficiency in animal models for osteoporosis
R. G. Erben
1   Institut für Physiologie, Pathophysiologie und Biophysik, Dept. für Biomedizinische Wissenschaften, Veterinärmedizinische Universität Wien, Österreich
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 10. Januar 2010

angenommen: 11. Januar 2010

Publikationsdatum:
30. Dezember 2017 (online)

Zusammenfassung

Hypogonadismus ist einer der wichtigsten Risikofaktoren der Osteoporose des Mannes. Tiermodelle, insbesondere Ratten- und Mäusemodelle, sind dazu verwendet worden, das Wissen über die Skelettwirkungen von Androgenen zu vermehren. Androgenmangel während des Wachstums führt zu einem inad- äquaten Aufbau von insbesondere kortikaler Knochenmasse, während die Orchiektomie von alten, nicht mehr wachsenden Ratten einen ausgeprägten und lang anhaltenden Anstieg des Knochenturnovers induziert, der zum Verlust von trabekulärem und endokortikalem Knochen führt. Die letzteren Veränderungen spiegeln sehr gut die Veränderungen wider, die durch Androgenmangel bei adulten Männern induziert werden. Der Anstieg der Knochenresorption bei alten orchiektomierten Ratten ist verknüpft mit einem Anstieg der Konzentration an freiem löslichem RANKL im Knochenmark. Obwohl klar ist, dass der männliche Knochenstoffwechsel sowohl über den Androgenals auch über den Östrogenrezeptor-α (ER) beeinflusst werden kann, haben eine Reihe von klinischen Daten und Daten aus Tierexperimenten nahe gelegt, dass der Erhaltung der trabekulären und endokortikalen Skelettmasse unter physiologischen Bedingungen hauptsächlich ein ER-vermittelter Signalweg nach Aromatisierung von Androgenen zu Östrogenen zugrunde liegt.

Summary

Hypogonadism is considered to be one of the major risk factors for osteoporosis in men. Animal models, especially rats and mice, have been used to improve our understanding of the skeletal effects of androgens. Androgen deficiency during growth is associated with a failure to acquire normal peak bone mass, whereas orchiectomy of aged, nongrowing male rats is associated with a pronounced and sustained increase in bone turnover and with a concomitant loss of cancellous and endocortical bone, closely mimicking the conditions induced by androgen withdrawal in adult humans. The increase in bone resorption found in aged androgen deficient rats is associated with an upregulation of free soluble RANKL in bone marrow. Although there is firm evidence that male bone metabolism can be influenced via the androgen and the estrogen receptor-α (ER), a variety of clinical and animal experimental data have suggested that, under physiological conditions, the maintenance of cancellous and endocortical bone mass in males primarily involves the ER-α-mediated skeletal action of estrogen derived from the aromatization of androgens.

 
  • Literatur

  • 1 Anderson FH, Francis RM, Selby PL, Cooper C. Sex hormones and osteoporosis in men. Calcif Tissue Int 1998; 62: 185-188.
  • 2 Bellido T, Jilka RL, Boyce BF. et al. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 1995; 95: 2886-2895.
  • 3 Brinkmann A, Jenster G, Ris-Stalpers C. et al. Molecular basis of androgen insensitivity. Steroids 1996; 61: 172-175.
  • 4 Broulik PD. Tamoxifen prevents bone loss in castrated male mice. Horm Metab Res 2000; 32: 181-184.
  • 5 Broulik PD, Stárka L. Effect of antiandrogens casodex and epitestosterone on bone composition in mice. Bone 1997; 20: 473-475.
  • 6 Callewaert F, Venken K, Kopchick JJ. et al. Sexual dimorphism in cortical bone size and strength but not density is determined by independent and timespecific actions of sex steroids and IGF-I: Evidence from pubertal mouse models. J Bone Miner Res 2010; 25 (03) 617-626.
  • 7 Colvard DS, Eriksen EF, Keeting PE. et al. Identification of androgen receptors in normal human osteoblast- like cells. Proc Natl Acad Sci U S A 1989; 86: 854-857.
  • 8 Daniell HW. Osteoporosis after orchiectomy for prostate cancer. J Urol 1997; 157: 439-444.
  • 9 Daniell HW, Dunn SR, Ferguson DW. et al. Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J Urol 2000; 163: 181-186.
  • 10 Diamond T, Campbell J, Bryant C, Lynch W. The effect of combined androgen blockade on bone turnover and bone mineral densities in men treated for prostate carcinoma – Longitudinal evaluation and response to intermittent cyclic etidronate therapy. Cancer 1998; 83: 1561-1566.
  • 11 Duan Y, Beck TJ, Wang XF, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 2003; 18: 1766-1774.
  • 12 Erben RG. Skeletal effects of androgen withdrawal. J Musculoskel Neuron Interact 2001; 01: 225-233.
  • 13 Erben RG, Eberle J, Stahr K, Goldberg M. Androgen deficiency induces high turnover osteopenia in aged male rats: a sequential histomorphometric study. J Bone Miner Res 2000; 15: 1085-1098.
  • 14 Falahati-Nini A, Riggs BL, Atkinson EJ. et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 2000; 106: 1553-1560.
  • 15 Franklin M, Bu SY, Lerner MR. et al. Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway. Bone 2006; 39: 1331-1342.
  • 16 Fukuda S, Iida H. Effects of orchidectomy on bone metabolism in beagle dogs. J Vet Med Sci 2000; 62: 69-73.
  • 17 Gilsanz V, Roe TF, Gibbens DT. et al. Effect of sex steroids on peak bone density of growing rabbits. Am J Physiol 1988; 255: E416-E421.
  • 18 Goldray D, Weisman Y, Jaccard N. et al. Decreased bone density in elderly men treated with the gonadotropin-releasing hormone agonist decapeptyl (D-Trp6-GnRH). J Clin Endocrinol Metab 1993; 76: 288-290.
  • 19 Greendale GA, Edelstein S, Barrett-Connor E. Endogenous sex steroids and bone mineral density in older women and men: The Rancho Bernardo study. J Bone Miner Res 1997; 12: 1833-1843.
  • 20 Gunness M, Orwoll E. Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats. J Bone Miner Res 1995; 10: 1735-1744.
  • 21 Harada N, Yamada K. Ontogeny of aromatase messenger ribonucleic acid in mouse brain: fluorometri-calquantitation by polymerase chain reaction. Endocrinology 1992; 131: 2306-2312.
  • 22 Jansson JO, Eden S, Isaksson O. Sexual dimorphism in the control of growth hormone secretion. Endocr Rev 1985; 06: 128-150.
  • 23 Jansson JO, Ekberg S, Isaksson OG, Eden S. Influence of gonadal steroids on age- and sex-related secretory patterns of growth hormone in the rat. Endocrinology 1984; 114: 1287-1294.
  • 24 Katznelson L, Finkelstein JS, Schoenfeld DA. et al. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 1996; 81: 4358-4365.
  • 25 Kawano H, Sato T, Yamada T. et al. Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci U S A 2003; 100: 9416-9421.
  • 26 Ke HZ, Crawford DT, Qi H. et al. Long-Term Effects of Aging and Orchidectomy on Bone and Body Composition in Rapidly Growing Male Rats. J Musculoskel Neuron Interact 2001; 01: 215-224.
  • 27 Kong YY, Yoshida H, Sarosi I. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315-323.
  • 28 Korach KS, Couse JF, Curtis SW. et al. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Prog Horm Res 1996; 51: 159-186.
  • 29 Lacey DL, Timms E, Tan HL. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165-176.
  • 30 Mellstrom D, Vandenput L, Mallmin H. et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res 2008; 23: 1552-1560.
  • 31 Morishima A, Grumbach MM, Simpson ER. et al. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 1995; 80: 3689-3698.
  • 32 Most W, Van der Wee-Pals L, Ederveen A. et al. Ovariectomy and orchidectomy induce a transient increase in the osteoclastogenic potential of bone marrow cells in the mouse. Bone 1997; 20: 27-30.
  • 33 Muñoz-Torres M, Jódar E, Quesada M, Escobar-Jiménez F. Bone mass in androgen-insensitivity syndrome: Response to hormonal replacement therapy. Calcif Tissue Int 1995; 57: 94-96.
  • 34 Ohlsson C, Vandenput L. The role of estrogens for male bone health. Eur J Endocrinol 2009; 160: 883-889.
  • 35 Orwoll ES, Klein RF. Osteoporosis in men. Endocr Rev 1995; 16: 87-116.
  • 36 Oz OK, Zerwekh JE, Fisher C. et al. Bone has a sexually dimorphic response to aromatase deficiency. J Bone Miner Res 2000; 15: 507-514.
  • 37 Proell V, Xu H, Schüler C. et al. Androgen deficiency up-regulates free soluble RANKL in bone marrow of aged rats. Bone 2009; 45: 677-681.
  • 38 Reim NS, Breig B, Stahr K. et al. Cortical bone loss in androgen-deficient aged male rats is mainly caused by increased endocortical bone remodeling. J Bone Miner Res 2008; 23: 694-704.
  • 39 Riggs BL, Khosla S, Melton III LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002; 23: 279-302.
  • 40 Riggs BL, Melton LJ. Evidence for two distinct syndromes of involutional osteoporosis. Am J Med 1983; 75: 899-901.
  • 41 Riggs BL, Melton III LJ. Involutional osteoporosis. N Engl J Med 1986; 314: 1676-1686.
  • 42 Seeman E. Periosteal bone formation – a neglected determinant of bone strength. N Engl J Med 2003; 349: 320-323.
  • 43 Shah R, Woolley MM, Costin G. Testicular feminization: the androgen insensitivity syndrome. J Pediatr Surg 1992; 27: 757-760.
  • 44 Shozu M, Simpson ER. Aromatase expression of human osteoblast-like cells. Mol Cell Endocrinol 1998; 139: 117-129.
  • 45 Simonet WS, Lacey DL, Dunstan CR. et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309-319.
  • 46 Simpson ER, Clyne C, Rubin G. et al. Aromatase – a brief overview. Annu Rev Physiol 2002; 64: 93-127.
  • 47 Smith EP, Boyd J, Frank GR. et al. Estrogen resistance caused by a mutation in the estrogen- receptor gene in a man. N Engl J Med 1994; 331: 1056-1061.
  • 48 Smithson G, Couse JF, Lubahn DB. et al. The role of estrogen receptors and androgen receptors in sex steroid regulation of B lymphopoiesis. J Immunol 1998; 161: 27-34.
  • 49 Smithson G, Medina K, Ponting I, Kincade PW. Estrogen suppresses stromal cell-dependent lymphopoiesis in culture. J Immunol 1995; 155: 3409-3417.
  • 50 Stepan JJ, Lachman M, Zverina J. et al. Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling. J Clin Endocrinol Metab 1989; 69: 523-527.
  • 51 Tuck SP, Francis RM. Testosterone, bone and osteoporosis. Front Horm Res 2009; 37: 123-132.
  • 52 Turner RT, Vandersteenhoven JJ, Bell NH. The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 1987; 02: 115-122.
  • 53 Turner RT, Wakley GK, Hannon KS. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 1990; 08: 612-617.
  • 54 Uesugi Y, Taguchi O, Noumura T, Iguchi T. Effects of sex steroids on the development of sexual dimorphism in mouse innominate bone. Anat Rec 1992; 234: 541-548.
  • 55 Vandenput L, Swinnen JV, Boonen S. et al. Role of the androgen receptor in skeletal homeostasis: the androgen-resistant testicular feminized male mouse model. J Bone Miner Res 2004; 19: 1462-1470.
  • 56 Vanderschueren D, Jans I, Van Herck E. et al. Timerelated increase of biochemical markers of bone turnover in androgen-deficient male rats. Bone Miner 1994; 26: 123-131.
  • 57 Vanderschueren D, Van Herck E, Schot P. et al. The aged male rat as a model for human osteoporosis: evaluation by nondestructive measurements and biomechanical testing. Calcif Tissue Int 1993; 53: 342-347.
  • 58 Vanderschueren D, Van Herck E, Suiker AM. et al. Bone and mineral metabolism in the adult guinea pig: long-term effects of estrogen and androgen deficiency. J Bone Miner Res 1992; 07: 1407-1415.
  • 59 Vanderschueren D, Van Herck E, Suiker AM. et al. Bone and mineral metabolism in aged male rats: short and long term effects of androgen deficiency. Endocrinology 1992; 130: 2906-2916.
  • 60 Vanderschueren D, Van Herck E, Suiker AM. et al. Bone and mineral metabolism in the androgen-resistant (testicular feminized) male rat. J Bone Miner Res 1993; 08: 801-809.
  • 61 Venken K, De Gendt K, Boonen S. et al. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res 2006; 21: 576-585.
  • 62 Venken K, Moverare-Skrtic S, Kopchick JJ. et al. Impact of androgens, growth hormone, and IGF-I on bone and muscle in male mice during puberty. J Bone Miner Res 2007; 22: 72-82.
  • 63 Vidal O, Lindberg MK, Hollberg K. et al. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci U S A 2000; 97: 5474-5479.
  • 64 Viselli SM, Reese KR, Fan J. et al. Androgens alter B cell development in normal male mice. Cell Immunol 1997; 182: 99-104.
  • 65 Wakley GK, Schutte HDJ, Hannon KS, Turner RT. Androgen treatment prevents loss of cancellous bone in the orchidectomized rat. J Bone Miner Res 1991; 06: 325-330.
  • 66 Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology 1997; 138: 4013-4021.
  • 67 Weissberger AJ, Ho KK. Activation of the somatotropic axis by testosterone in adult males: evidence for the role of aromatization. J Clin Endocrinol Metab 1993; 76: 1407-1412.