Osteologie 2011; 20(03): 211-216
DOI: 10.1055/s-0037-1619995
Knochenzellbiologie und Osteoporosetherapie
Schattauer GmbH

Kathepsin-K-Inhibitoren in der Osteoporosetherapie

Cathepsin K inhibitors in the treatment of osteoporosis
C. Meier
1   Klinik für Endokrinologie, Diabetologie und Metabolismus, Universitätsspital Basel, Schweiz
,
M. E. Kraenzlin
1   Klinik für Endokrinologie, Diabetologie und Metabolismus, Universitätsspital Basel, Schweiz
› Author Affiliations
Further Information

Publication History

eingereicht: 11 August 2011

angenommen: 22 August 2011

Publication Date:
30 December 2017 (online)

Zusammenfassung

Kathepsin K, eine in Osteoklasten exprimierte Cysteinprotease, ist ein wichtiges Enzym in der Degradation von Kollagen Typ I. Da Kathepsin K relativ spezifisch für Osteoklasten ist, ist diese Protease ein interessanter Angriffspunkt für die Entwicklung neuer Osteoporosepräparate. Im vergangenen Jahrzehnt wurden große Anstrengungen unternommen, hochwirksame, selektive und oral einnehmbare Kathepsin-K-Inhibitoren zu entwickeln. Im Gegensatz zu Balicatib und Relacatib, deren Arzneimittelentwicklung wegen kutaner Nebenwirkungen (bedingt durch eine zu geringe Spezifität des Arzneimittels) eingestellt wurde, wurden die spezifischeren Kathepsin-KInhibitoren Odanacatib (ODN) und ONO-5334 weiterentwickelt und bereits in ersten klinischen Studien untersucht. ODN erhöht bei postmenopausalen Frauen mit niedriger Knochenmasse progressiv die Knochenmineraldichte und hemmt die Knochenresorption. Eine kürzlich veröffentlichte Langzeitstudie bestätigt die klinische Wirksamkeit und Sicherheit von ODN, weist aber auch darauf hin, dass die Wirkung reversibel ist, d. h. nach dem Absetzen von ODN nimmt die Knochenresorption und der Knochenmassenverlust wieder rapid zu. Diese Beobachtungen sind vergleichbar mit dem zeitlich limitierten Effekt von Östrogenen, Denosumab und Parathormon, stehen jedoch im Gegensatz zu den nach dem Absetzen von Bisphosphonaten beobachteten residuellen Langzeitwirkungen. Derzeit wird eine Frakturpräventionsstudie an postmenopausalen Frauen mit Osteoporose, die mit ODN behandelt werden, durchgeführt.

Summary

Cathepsin K, a cysteine protease expressed in osteoclasts, degrades type 1 collagen. Since cathepsin K is relatively specific to osteoclasts, it represents a promising candidate for drug development. In the past decade, a lot of efforts have been made in developing highly potent, selective and orally applicable cathepsin K inhibitors. In contrast to balicatib and relacatib, whose drug development programmes were stopped due to cutaneous side-effects related to limited drug specificity, the more specific cathepsin K inhibitors odanacatib (ODN) and ONO-5334 have entered clinical trial programs. ODN progressively increases bone mineral density (BMD) and decreases bone resorption markers in postmenopausal women with low BMD. A recently published extension study confirms clinical efficacy and safety but indicates that ODN is characterized by a resolution-of-effect with increases in bone resorption and rapid decreases in BMD following treatment discontinuation. These observations are similar to the findings with hormone-replacement therapy, denosumab and parathyroid hormone but in contrast to changes observed after discontinuation of bisphosphonates. From a clinical perspective further studies are needed to elucidate whether rapid bone loss and sustained increases in bone turnover following cessation of ODN modifies fracture risk. A fracture prevention study in postmenopausal women with osteoporosis using ODN is currently underway.

 
  • Literatur

  • 1 Bromme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs 2009; 18 (05) 585-600.
  • 2 Bromme D, Okamoto K, Wang BB, Biroc S. Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem 1996; 271 (04) 2126-2132.
  • 3 Bossard MJ, Tomaszek TA, Thompson SK. et al. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem 1996; 271 (21) 12517-12524.
  • 4 Kafienah W, Bromme D, Buttle DJ. et al. Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem J 1998; 331 (Pt 3): 727-732.
  • 5 Garnero P, Borel O, Byrjalsen I. et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 1998; 273 (48) 32347-32352.
  • 6 Goto T, Yamaza T, Tanaka T. Cathepsins in the osteoclast. J Electron Microsc (Tokyo) 2003; 52 (06) 551-558.
  • 7 Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 1996; 273 (5279) 1236-1238.
  • 8 Saftig P, Hunziker E, Wehmeyer O. et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 1998; 95 (23) 13453-13458.
  • 9 Gowen M, Lazner F, Dodds R. et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 1999; 14 (10) 1654-1663.
  • 10 Rood JA, Van Horn S, Drake FH. et al. Genomic organization and chromosome localization of the human cathepsin K gene (CTSK). Genomics 1997; 41 (02) 169-176.
  • 11 Lecaille F, Bromme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie 2008; 90 (02) 208-226.
  • 12 Xia L, Kilb J, Wex H. et al. Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones. Biol Chem 1999; 380 (06) 679-687.
  • 13 Sassi ML, Eriksen H, Risteli L. et al. Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Bone 2000; 26 (04) 367-373.
  • 14 Mano H, Yuasa T, Kameda T. et al. Mammalian mature osteoclasts as estrogen target cells. Biochem Biophys Res Commun 1996; 223 (03) 637-642.
  • 15 Furuyama N, Fujisawa Y. Regulation of collagenolytic cysteine protease synthesis by estrogen in osteoclasts. Steroids 2000; 65 (07) 371-378.
  • 16 Parikka V, Lehenkari P, Sassi ML. et al. Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts. Endocrinology 2001; 142 (12) 5371-5378.
  • 17 Fujisaki K, Tanabe N, Suzuki N. et al. Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life Sci 2007; 13; 80 (14) 1311-1318.
  • 18 Zhao Q, Jia Y, Xiao Y. Cathepsin K: a therapeutic target for bone diseases. Biochem Biophys Res Commun 2009; 380 (04) 721-723.
  • 19 Falgueyret JP, Desmarais S, Oballa R. et al. Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against offtarget cathepsins and reduced functional selectivity. J Med Chem 2005; 48 (24) 7535-7543.
  • 20 Desmarais S, Black WC, Oballa R. et al. Effect of cathepsin k inhibitor basicity on in vivo off-target activities. Mol Pharmacol 2008; 73 (01) 147-156.
  • 21 Peroni A, Zini A, Braga V. et al. Drug-induced morphea: report of a case induced by balicatib and review of the literature. J Am Acad Dermatol 2008; 59 (01) 125-129.
  • 22 Kumar S, Dare L, Vasko-Moser JA. et al. A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone 2007; 40 (01) 122-131.
  • 23 Perez-Castrillon JL, Pinacho F, De Luis D. et al. Odanacatib, a new drug for the treatment of osteoporosis: review of the results in postmenopausal women. J Osteoporos 2010; 2010: 401581.
  • 24 Gauthier JY, Chauret N, Cromlish W. et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 2008; 18 (03) 923-928.
  • 25 Costa AG, Cusano NE, Silva BC. et al. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol 2011; 07 (08) 447-456.
  • 26 Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet 2011; 377 (9773) 1276-1287.
  • 27 Stoch SA, Zajic S, Stone J. et al. Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase I studies. Clin Pharmacol Ther 2009; 86 (02) 175-182.
  • 28 Bone HG, McClung MR, Roux C. et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res 2010; 25 (05) 937-947.
  • 29 Nagase S, Ohyama M, Hashimoto Y. et al. Pharmacodynamic Effects on Biochemical Markers of Bone Turnover and Pharmacokinetics of the Cathepsin K Inhibitor, ONO-5334, in an Ascending Multiple-Dose, Phase 1 Study. J Clin Pharmacol. 2011 Jun 30..
  • 30 Eisman JA, Bone HG, Hosking DJ. et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res 2011; 26 (02) 242-251.
  • 31 Greenspan SL, Emkey RD, Bone HG. et al. Significant differential effects of alendronate, estrogen, or combination therapy on the rate of bone loss after discontinuation of treatment of postmenopausal osteoporosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 2002; 137 (11) 875-883.
  • 32 Sornay-Rendu E, Garnero P, Munoz F. et al. Effect of withdrawal of hormone replacement therapy on bone mass and bone turnover: the OFELY study. Bone 2003; 33 (01) 159-166.
  • 33 Miller PD, Bolognese MA, Lewiecki EM. et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 2008; 43 (02) 222-229.
  • 34 Black DM, Bilezikian JP, Ensrud KE. et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med 2005; 353 (06) 555-565.
  • 35 Bauer DC. Discontinuation of odanacatib and other osteoporosis treatments: Here today and gone tomorrow?. J Bone Miner Res. 2011 Jan 5. [Epub ahead of print].
  • 36 Cummings SR, San JMartin, McClung MR. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 2009; 361 (08) 756-765.
  • 37 Black DM, Delmas PD, Eastell R. et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 2007; 356 (18) 1809-1822.