Tierarztl Prax Ausg K Kleintiere Heimtiere 2012; 40(01): 55-58
DOI: 10.1055/s-0038-1623620
Short Communication
Schattauer GmbH

Genetic characterization of dogs via chromosomal analysis and array-based comparative genomic hybridization (aCGH)[*]

Genetische Charakterisierung von Hunden mittels Chromosomenanalyse und Array-basierter komparativer genomischer Hybridisierung (aCGH)
M. H. Müller
1   Zentrum für Humangenetik, Universität Bremen
,
N. Reimann-Berg
1   Zentrum für Humangenetik, Universität Bremen
2   Klinik für Kleintiere und REBIRTH, Stiftung Tierärztliche Hochschule Hannover
,
J. Bullerdiek
1   Zentrum für Humangenetik, Universität Bremen
2   Klinik für Kleintiere und REBIRTH, Stiftung Tierärztliche Hochschule Hannover
,
H. Murua Escobar
2   Klinik für Kleintiere und REBIRTH, Stiftung Tierärztliche Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Eingegangen: 05 September 2011

Akzeptiert nach Revision: 15 November 2011

Publication Date:
05 January 2018 (online)

Summary

The results of cytogenetic and molecular cytogenetic investigations revealed similarities in genetic background and biological behaviour between tumours and genetic diseases of humans and dogs. These findings classify the dog a good and accepted model for human cancers such as osteosarcomas, mammary carcinomas, oral melanomas and others. With the appearance of new studies and advances in canine genome sequencing, the number of known homologies in diseases between these species raised and still is expected to increase. In this context, array-based comparative genomic hybridization (aCGH) provides a novel tool to rapidly characterize numerical aberrations in canine tumours or to detect copy number aberrations between different breeds. As it is possible to spot probes covering the whole genome on each chip to discover copy number aberrations of all chromosomes simultaneously, this method is time-saving and cost-effective – considering the relation of costs and the amount of data obtained. Complemented with traditional methods like karyotyping and fluorescence in situ hybridization (FISH) analyses, the aCGH is able to provide new insights into the underlying causes of canine carcinogenesis.

Zusammenfassung

Die Ergebnisse zytogenetischer und molekularzytogenetischer Untersuchungen zeigen Gemeinsamkeiten bezüglich des genetischen Hintergrunds und biologischen Verhaltens von Tumoren und genetisch bedingten Erkrankungen zwischen Mensch und Hund auf. Diese weisen den Hund als ein gutes und weithin akzeptiertes Tiermodell für humane Neoplasien wie Osteosarkome, Mammakarzinome, orale Melanome und andere Tumoren aus. Mit der Publikation neuer Studien und Fortschritten in der Sequenzierung des kaninen Genoms stieg die Anzahl der beschriebenen homologen Erkrankungen, die beide Spezies betreffen, und wird weiter zunehmen. In diesem Zusammenhang ist die Array-basierte komparative genomische Hybridisierung ein neues Werkzeug zur schnellen Charakterisierung von numerischen Aberrationen in kaninen Tumoren sowie zur Detektion von Variationen der Kopienanzahl diverser Gene bei unterschiedlichen Hunderassen. Durch die Möglichkeit, DNA-Sonden, die das ganze kanine Genom abdecken, auf einen einzelnen Chip aufzubringen, eröffnet diese Methode zeitsparende und – im Verhältnis von eingesetzten Kosten zur erhaltenen Datenmenge – kosteneffektive Alternativen. In Ergänzung mit traditionellen Methoden wie Karyotypisierung und FISH ermöglicht die aCGH neue Einsichten in die Hintergründe der kaninen Karzinogenese.

* Dedicated to the 60th birthday of Prof. Dr. Ingo Nolte.


 
  • References

  • 1 Angstadt AY, Motsinger-Reif A, Thomas R, Kisseberth WC, Guillermo CCouto, Duval DL. et al. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: Signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart. Genes Chromosomes Cancer 2011; 50 (11) 859-874.
  • 2 Bartnitzke S, Motzko H, Caselitz J, Kornberg M, Bullerdiek J, Schloot W. A recurrent marker chromosome involving chromosome 1 in two mammary tumors of the dog. Cytogenet Cell Genet 1992; 60 (02) 135-137.
  • 3 Bartnitzke S, Motzko H, Rosenhagen C, Bullerdiek J. Benign mixed tumor of canine mammary gland showing an r (X) and trisomy 5 as the only clonal abnormalities. Cancer Genet Cytogenet 1992; 62 (01) 29-31.
  • 4 Goldenberg A, Saugier-Veber P. [Genetics of mental retardation]. Pathol Biol 2010; 58 (05) 331-342.
  • 5 Griffin DK, Finch KA. The genetic and cytogenetic basis of male infertility. Hum Fertil (Camb) 2005; 08 (01) 19-26.
  • 6 Hahn KA, Richardson RC, Hahn EA, Chrisman CL. Diagnostic and prognostic importance of chromosomal aberrations identified in 61 dogs with lymphosarcoma. Vet Pathol 1994; 31 (05) 528-540.
  • 7 Horsting N, Wohlsein P, Reimann N, Bartnitzke S, Bullerdiek J, Nolte I. Cytogenetic analysis of three oropharyngeal malignant melanomas in dogs. Res Vet Sci 1999; 67 (02) 149-151.
  • 8 Idowu L. Observations on the chromosomes of a lymphosarcoma in a dog. Vet Rec 1976; 99 (06) 103.
  • 9 International Standing Committee on Human Cytogenetic Nomenclature. Shaffer LG, Slovak ML, Campbell LJ. eds. ISCN 2009: an international system for human cytogenetic nomenclature. Basel; Unionville, CT: Karger; 2009. vi, 138 p., 1 folded leave p..
  • 10 Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP. et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 2004; 36 (03) 299-303.
  • 11 Knapp DW, Waters DJ. Naturally occurring cancer in pet dogs: important models for developing improved cancer therapy for humans. Mol Med Today 1997; 03 (01) 8-11.
  • 12 Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005; 438 7069 803-819.
  • 13 MacEwen EG. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev 1990; 09 (02) 125-136.
  • 14 Mayr B, Schleger W, Kalat M, Schweiger P, Reifinger M, Eisenmenger E. Cytogenetic studies in a canine mammary tumor. Cancer Genet Cytogenet 1990; 47 (01) 83-87.
  • 15 Mitelman F, Johansson B, Mertens F. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. 2011 Available from: http://cgap.nci.nih.gov/Chromosomes/Mitelman
  • 16 Mueller F, Fuchs B, Kaser-Hotz B. Comparative biology of human and canine osteosarcoma. Anticancer Res 2007; 27 (1A): 155-164.
  • 17 Nicholas TJ, Cheng Z, Ventura M, Mealey K, Eichler EE, Akey JM. The genomic architecture of segmental duplications and associated copy number variants in dogs. Genome Res 2009; 19 (03) 491-499.
  • 18 Nicholas TJ, Baker C, Eichler EE, Akey JM. A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog. BMC Genomics 2011; 12 (01) 414.
  • 19 Nolte M, Werner M, Nolte I, Georgii A. Different cytogenetic findings in two clinically similar leukaemic dogs. J Comp Pathol 1993; 108 (04) 337-342.
  • 20 Ogilvie CM. Prenatal diagnosis for chromosome abnormalities: past, present and future. Pathol Biol 2003; 51 (03) 156-160.
  • 21 Ostrander EA, Galibert F, Patterson DF. Canine genetics comes of age. Trends Genet 2000; 16 (03) 117-124.
  • 22 Paoloni M, Davis S, Lana S, Withrow S, Sangiorgi L, Picci P. et al. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics 2009; 10: 625.
  • 23 Patterson DF, Haskins ME, Jezyk PF. Models of human genetic disease in domestic animals. Adv Hum Genet 1982; 12: 263-339.
  • 24 Rebbeck CA, Thomas R, Breen M, Leroi AM, Burt A. Origins and evolution of a transmissible cancer. Evolution 2009; 63 (09) 2340-2349.
  • 25 Reimann-Berg N, Willenbrock S, Murua HEscobar, Eberle N, Gerhauser I, Mischke R. et al. Two new cases of polysomy 13 in canine prostate cancer. Cytogenet Genome Res 2011; 132 1-2 16-21.
  • 26 Reimann N, Bartnitzke S, Bullerdiek J, Schmitz U, Rogalla P, Nolte I. et al. An extended nomenclature of the canine karyotype. Cytogenet Cell Genet 1996; 73 1-2 140-144.
  • 27 Reimann N, Nolte I, Bonk U, Werner M, Bullerdiek J, Bartnitzke S. Trisomy 18 in a canine thyroid adenoma. Cancer Genet Cytogenet 1996; 90 (02) 154-156.
  • 28 Reimann N, Bartnitzke S, Bullerdiek J, Mischke R, Nolte I. Trisomy 1 in a canine acute leukemia indicating the pathogenetic importance of polysomy 1 in leukemias of the dog. Cancer Genet Cytogenet 1998; 101 (01) 49-52.
  • 29 Reimann N, Bartnitzke S, Nolte I, Bullerdiek J. Working with canine chromosomes: current recommendations for karyotype description. J Hered 1999; 90 (01) 31-34.
  • 30 Reimann N, Nolte I, Bartnitzke S, Bullerdiek J. Re: Sit, DNA, sit: cancer genetics going to the dogs. J Natl Cancer Inst 1999; 91 (19) 1688-1689.
  • 31 Reimann N, Nolte I, Bonk U, Bartnitzke S, Bullerdiek J. Cytogenetic investigation of canine lipomas. Cancer Genet Cytogenet 1999; 111 (02) 172-174.
  • 32 Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997; 20 (04) 399-407.
  • 33 Standing Committee on Human Cytogenetic Nomenclature. National Foundation. An international system for human cytogenetic nomenclature (1978): ISCN (1978): report of the Standing Committee on Human Cytogenetic Nomenclature. Hässelby Castle, Stockholm, Sweden, September 4-9th, 1977. Basel, New York: Karger; 1978. 92 p., 1 fold. leaf of plates p.
  • 34 Tang J, Le S, Sun L, Yan X, Zhang M, Macleod J. et al. Copy number abnormalities in sporadic canine colorectal cancers. Genome Res 2010; 20 (03) 341-350.
  • 35 Thomas R, Fiegler H, Ostrander EA, Galibert F, Carter NP, Breen M. A canine cancer-gene microarray for CGH analysis of tumors. Cytogenet Genome Res 2003; 102 1-4 254-260.
  • 36 Thomas R, Smith KC, Ostrander EA, Galibert F, Breen M. Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 2003; 89 (08) 1530-1537.
  • 37 Thomas R, Scott A, Langford CF, Fosmire SP, Jubala CM, Lorentzen TD. et al. Construction of a 2-Mb resolution BAC microarray for CGH analysis of canine tumors. GenomeRes 2005; 15 (12) 1831-1837.
  • 38 Thomas R, Duke SE, Bloom SK, Breen TE, Young AC, Feiste E. et al. A cytogenetically characterized, genome-anchored 10-Mb BAC set and CGH array for the domestic dog. J Hered 2007; 98 (05) 474-484.
  • 39 Thomas R, Duke SE, Karlsson EK, Evans A, Ellis P, Lindblad-Toh K. et al. A genome assembly-integrated dog 1 Mb BAC microarray: a cytogenetic resource for canine cancer studies and comparative genomic analysis. Cytogenet Genome Res 2008; 122 (02) 110-121.
  • 40 Thomas R, Wang HJ, Tsai PC, Langford CF, Fosmire SP, Jubala CM. et al. Influence of genetic background on tumor karyotypes: evidence for breedassociated cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res 2009; 17 (03) 365-377.
  • 41 Thomas R, Seiser EL, Motsinger-Reif A, Borst L, Valli VE, Kelley K. et al. Refining tumor-associated aneuploidy through ‘genomic recoding’ of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas. Leuk Lymphoma 2011; 52 (07) 1321-1335.
  • 42 Wilgenbus KK, Lichter P. DNA chip technology ante portas. J Mol Med (Berl) 1999; 77 (11) 761-768.
  • 43 Winkler S, Murua HEscobar, Reimann-Berg N, Bullerdiek J, Nolte I. Cytogenetic investigations in four canine lymphomas. Anticancer Res 2005; 25 (6B): 3995-3998.
  • 44 Winkler S, Reimann-Berg N, Murua HEscobar, Loeschke S, Eberle N, Hoinghaus R. et al. Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Cancer Genet Cytogenet 2006; 169 (02) 154-158.
  • 45 Withrow SJ, MacEwen EG. Clinical Veterinary Oncology. Philadelphia: Lippincott; 1989. xv 507.
  • 46 Zhang L, Zhang XH, Wang JL, Ren MH, Pei QY, Wei J. Cytogenetic analysis of 355 cases of fetal loss in different trimesters. Prenat Diagn 2011; 31 (02) 152-158.