Nuklearmedizin 1970; 09(04): 354-365
DOI: 10.1055/s-0038-1624725
Originalarbeiten — Original Articles — Travaux Originaux
Schattauer GmbH

The Accumulation of Chromium Complexes in Skeletal Tissue

L’accumulation de complexes du chrome dans le tissu squelettalDie Anreicherung von Chrom-Komplexen im Knochengewebe
Leopoldo J. Anghileri*
1   University of Colorado Medical Center and Veterans Administration Hospital Denver, Colorado, USA
› Author Affiliations
Further Information

Publication History

Received: 07 July 1970

Publication Date:
23 January 2018 (online)

Summary

Studies of the in vivo distribution of 51Cr-alloxantin complex show a high uptake by bone. 24 hours after intravenous injection, approximately 20% of the complex remains in the body, and 50—65% of this chromium is in skeleton. In vitro studies of its interaction with calcium carbonate and phosphate indicate a minimum of cation exchange, and therefore it is postulated that most of the interaction is due to a complex formation with the crystal lattice.

L’étude de la distribution du 51Cr-alloxantine chez le rat et la souris a montré une accumulation très élevée dans l’os. 24 heurs après l’injection intra-veineuse presque 20% du complex reste dans le corps, et 50—65% de ce Chrome se fixait dans le squelette. L’étude in vitro de l’interaction avec le carbonate et le phosphate du calcium indique un minimum d’échange de cations. L’interaction semble se produire par la formation d’un complex avec le lattice cristalline.

Untersuchungen der In-vivo-Verteilung von 51Cr-Alloxantin-Komplex zeigen eine hohe Anreicherung im Knochengewebe. Ungefähr 20% des Komplexes ver-bleiben 24 Stunden nach intravenöser Injektion im Körper und davon 50—65% im Skelett. In-vitro-Untersuchungen der Reaktion des Komplexes mit Calcium-carbonat und -Phosphat weisen auf einen minimalen Kationenaustausch hin: deshalb wird angenommen, daß die Reaktion größtenteils auf eine Komplexbil-dung mit der Kristallstruktur zurückzuführen ist.

* Present address: Klinikum Essen (Tumorforschung) der Ruhr-Universität, Hufelandstr. 55, 43 Essen — West Germany.


 
  • References

  • 1 Looney W. B. The initial medical and industrial use of radioactive materials (1915-1940). Amer. J. Roentgenol 1954; 72: 838.
  • 2 Dougherty T. F, Stover B. J, Dougherty J. H, Jee W. S, Mays C. W, Rehfeld C. E, Christensen W. K, Goldthorpe H. C. Studies on the biological effects of 226Ra, 239Pu, 228Ra (MsTh1), 228Th (RdTh) and 90Sr in adult beagles. Radiat. Res 1962; 17: 625.
  • 3 Bauer G, Carlsson A, Lindquist B. Metabolism of 140Ba in man. Acta Orthop. scand 1957; 26: 241.
  • 4 Baserga R. Radioactive isotope in Ortopaedics. In Turek S. L. Orthopaedics: Principles and their application. J. B. Lippincot Co; Philadelphia: 1959: 843-854
  • 5 Aslings C. W, Johnston M. E, Durbin P. W, Hamilton J. G. Localization of cerium-144 in the skeletal tissue of fetal rats. UCRL-8024 Biology and Medicine; U.S. Atomic Energy Commission: 1957: 1-28
  • 6 Dudley H. C, Maddox G. E. Deposition of radiogallium (72Ga) in skeletal tissue. J. Pharmacol, exp. Ther 1949; 96: 224.
  • 7 Fleming W. H, Mcllraith J. D, King E. R. Photoscanning of bone lesions utilizing strontium 85. Radiology 1961; 77: 635.
  • 8 Woodard H. Q, Kenney J. M. The relation of phosphatase activity in bone tumors to the deposition of radioactive phosphorus. Amer. J. Roentgen 1942; 47: 227.
  • 9 Blau M, Nagler W, Benden M. A. Fluorine-18: A new isotope for bone scanning. J. nucl. Med 1962; 3: 332.
  • 10 Brondolo W, Randelli G. La distribuzione del radioisotopo 35S nelle ossa lunghe di ratti albini. Arch. Ortop. (Milano) 1962; 75: 1414.
  • 11 Posner A. S, Eanes E. D, Harper R. A, Zipkin I. X-ray diffraction analysis of the effect of fluoride on human bone apatite. Arch, oral Biol 1963; 8: 549.
  • 12 Hoyte D. A. N. Alizarin as an indicator of bone growth. J. Anat 1960; 94: 432.
  • 13 Johnson R. H. Tetracyclines: A review of the Literature —1948 through 1963. J. oral Therap. Pharmaccl 1964; 1: 190.
  • 14 Jacobs R, Harris W. H, Katz E. P, Glimcher M. J. The interaction between tetracycline and reconstituted guinea-pigskin collagen in vitro. Biochim. Biophys. Acta 1964; 86: 579.
  • 15 Finerman G. A. M, Milch R. A. In vitro binding of tetracycline to calcium. Nature 1963; 198: 486.
  • 16 Anghileri L. J. Cationic aggregation and experimental brain tumor's uptake of 51Cr-ß-glycerophosphate. J. nucl. Biol. Med 1968; 12: 128.
  • 17 Anghileri L. J. Uptake of 51Cr-ß-glycerophosphate by experimental brain tumors. Z. Krebsforsch 1969; 72: 350.
  • 18 Anghileri L. J. Cation exchange properties of bone tissue. Experientia 1969; 25: 283.
  • 19 Rollinson C. L. In „Chemistry of the Coordination Compounds". Bailar Ed J.C. Reinhold Publ. Co.; New York: 1956: 448.
  • 20 Anghileri L. J. Complexes of chromium with ß-glycerophosphate: Their nature and properties. Z. Naturforschung 25 b 1970; 3: 288.
  • 21 Anghileri L. J. Biochemical approach to a tumor localizing agent: 51Cr-ß-glycerophosphate complex. Oncology 1970; 24: 1.
  • 22 Anghileri L. J. 51Cr-EDTA and 51Cr-DTPA: Renal diagnostic agents Influence of the method of preparation on their biological behaviour. Intern. J. clin. Pharm. Therapy Toxicology 1970; 3: 238.