Nervenheilkunde 2008; 27(10): 875-882
DOI: 10.1055/s-0038-1627335
Originaler Artikel
Schattauer GmbH

Die HIV-assoziierte Demenz und ihre Vorstufen

HIV-associated dementia and its precursor stages
G. Arendt
1   Neurologische Klinik des Universitätsklinikums Düsseldorf (UKD)
,
T. Nolting
2   Psychiatrische Klinik des Universitätsklinikums Düsseldorf (UKD)
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen am: 28. Juli 2008

angenommen am: 02. August 2008

Publikationsdatum:
22. Januar 2018 (online)

Zusammenfassung

Als 1996 die modernen antiretroviralen Kombinationstherapien (hochaktive antiretrovirale Therapie, HAART) in die Behandlung der HIV-Infektion eingeführt wurden, herrschte die Vorstellung, es werde gelingen, alle Komplikationen dieser Infektionskrankheit erfolgreich zu therapieren. Zunächst nahmen die neurologischen Komplikationen auch deutlich ab. Zu Beginn dieses Jahrtausends zeigte sich dann aber eine Prävalenzzunahme der HIV-assoziierten Gehirnerkrankungen, was als Folge der längeren Überlebenszeiten HIV-positiver Menschen interpretiert wurde. Von 2003 an erschienen jedoch Publikationen, die auch auf eine Inzidenzzunahme hinwiesen. Für den praktisch tätigen Mediziner sind daher Wissen über die klinische Präsentation dieser Erkrankungen und die sorgfältige differenzialdiagnostische Abgrenzung von sogenannten opportunistischen Infektionen (Cytomegalie-Virus-Encephalitis, zerebrale Toxoplasmose oder zerebrales Lymphom mit diffuser Ausbreitung und progressive, multifokale Leukencephalopathie) wesentlich. Die folgende Arbeit soll neue diagnostische Kriterien vorstellen und differenzialdiagnostische Überlegungen erleichtern.

Summary

When modern antiretroviral combination therapy (highly active antiretroviral therapy, HAART) was established as standard treatment of HIV-1-positive patients in 1996, the hope was to successfully cure all complications of this infectious disease. During the late nineties, especially neurological HIV-1-associated diseases declined in incidence. But during the first years of this century, there was a rise in prevalence of HIV-induced central and peripheral nervous system diseases what has been interpreted as a consequence of longer survival times of HIV-1-positive patients. From 2003 on, publications pointed to a parallel rise in incidence especially of HIV-1-associated neuro-cognitive disorders. Thus, the generalist should have knowledge on clinical presentation of HIV-1-associated brain disease and differential diagnosis with respect to opportunistic brain disease (esp. cytomegalovirus encephalitis, cerebral toxoplasmosis or diffusely spreading cerebral lymphoma as well as progressive multifocal leukoencephalopathy, PML). This paper presents new diagnostic criteria and should facilitate differential diagnosis.

 
  • Literatur

  • 1 Abdulle S. et al. Continuing intrathecal immunoactivation despite two years of effective antiretroviral therapy against HIV-1infection. Aids 2002; 16 (Suppl. 16) 2145-2149.
  • 2 Abdulle S. et al. Effects of antiretroviral treatment on blood-brain barrier integrity and intrathecal immunoglobulin production in neuroasymptomatic HIV-1-infected patients. HIV Med 2005; 6 (Suppl. 03) 164-169.
  • 3 Ances BM. et al. Role of psychiatric medications as adjunct therapy in the treatment of HIV associated neurocognitive disorders. Int Rev Psychiatry 2008; 20 (Suppl. 01) 89-93.
  • 4 Antinori A. et al. Updated research nosology for HIV-associated neurocognitive disorders (HAND). Neurology 2007; 9 (Suppl. 18) 1789-1799.
  • 5 Arendt G. et al. Motor dysfunction in HIV-infected patients without clinically detectable centralnervous deficit. J Neurol 1990; 237 (Suppl. 06) 362-368.
  • 6 Arendt G. et al. Two cases of cerebral toxoplasmosis in AIDS patients mimicking HIV-related dementia. J Neurol 1991; 238 (Suppl. 08) 439-442.
  • 7 Arendt G. et al. Improvement of motor performance of HIV-positive patients under AZT therapy. Neurology 1992; 42 (Suppl. 04) 891-896.
  • 8 Arendt G. et al. Motor analysis predicts progression in HIV-associated brain disease. J Neurol Sci 1994; 123 1-2 180-185.
  • 9 Arendt G. Imaging methods as a diagnostic tool in neuro-AIDS. A review. Bildgebung 1995; 62 (Suppl. 04) 310-319.
  • 10 Arendt G, von Giesen HJ. Pathogenese und Therapie von Neuro-AIDS. Bremen: UNI-MED Verlag; 2000
  • 11 Arendt G, von Giesen HJ. Antiretroviral therapy regimen for neuro-AIDS. Curr Drug Targets Infect Disord 2002; 2 (Suppl. 03) 187-192.
  • 12 Arendt G. Neurological manifestations of HIV-infection in the era of highly active antiretroviral therapy (HAART). Fortschr Neurol Psychiatr 2005; 73 (Suppl. 10) 577-586.
  • 13 Arendt G. et al. Intrathecal viral replication and cerebral deficits in different stages of HIV disease. JNV 2007; 13 (Suppl. 03) 225-232.
  • 14 Arendt G. Neurologische und neuropsychiatrische Aspekte der HIV-Infektion – Grundlagen, Diagnostik und Therapie. Stuttgart: Kohlhammer Verlag; 2007
  • 15 Baldo JV. et al. Verbal and design fluency in patients with frontal lobe lesions. J Int Neuropsychol Soc 2001; 7 (Suppl. 05) 586-596.
  • 16 Brew BJ, Dore G. Decreasing incidence of CNS AIDS defining events associated with antiretroviral therapy. Neurology 2000; 55 (Suppl. 09) 1424.
  • 17 Brew BJ. Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. Aids 2004; 18 (Suppl. 01) S75-78.
  • 18 Burdo TH. et al. Osteopontin is increased in HIVassociated dementia. J Infect Dis. 2008 Epub ahead of print.
  • 19 Carey CL. et al. Additive Deleterious Effects of Methamphetamine Dependence and Immunosup pression on Neuropsychological Functioning in HIV Infection. AIDS Behav 2006; 10: 185-190.
  • 20 Cinque P. et al. Molecular analysis of cerebrospinal fluid: potential for the study of HIV-1 infection of the central nervous system. IJNV 2000; 6 (Suppl. 01) S95-S102.
  • 21 Clifford DB. HIV-associated Neurocognitive Disease Continues in the Antiretroviral Era. Top HIV Med 2008; 16 (Suppl. 02) 94-98.
  • 22 Cunningham PH. et al. Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. Aids 2000; 14 (Suppl. 13) 1949-1954.
  • 23 Cysique LA. et al. Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre-and posthighly active antiretroviral therapy eras: a combined study of two cohorts. IJNV 2004; 10 (Suppl. 06) 350-357.
  • 24 Cysique LA. et al. Antiretroviral therapy in HIV infection: are neurologically active drugs important?. Arch Neurol 2004; 61 (Suppl. 11) 1699-1704.
  • 25 Cysique LA. et al. The assessment of cognitive function in advanced HIV-1 infection and AIDS dementia complex using a new computerised cognitive test battery. Arch Clin Neuropsychol 2006; 21 (Suppl. 02) 185-194.
  • 26 Czub S. et al. Modulation of simian immunodeficiency virus neuropathology by dopaminergic drugs. Acta Neuropathol (Berl) 2004; 107 (Suppl. 03) 216-226.
  • 27 Dhillon NK. et al. Roles of MCP-1 in development of HIV-dementia. Front Biosci 2008; 13: 3913-3918.
  • 28 Dore GJ. et al. Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy. Aids 2003; 17 (Suppl. 10) 1539-1545.
  • 29 Ellis RJ. et al. Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 2000; 54 (Suppl. 04) 927-936.
  • 30 Evans SR. et al. Selegiline transdermal system (STS) for HIV-associated cognitive impairment: open-label report of ACTG 5090. HIV Clin Trials 2007; 8 (Suppl. 06) 437-446.
  • 31 Evers S. et al. Recommendations for the coding of neural manifestations of HIV-infections. Nervenarzt 2005; 76 (Suppl. 12) 1542 1544, 1546.
  • 32 Garcia F. et al. Cerebrospinal fluid HIV-1 RNA levels in asymptomatic patients with early stage chronic HIV-1 infection: support for the hypothesis of local virus replication. Aids 1999; 13 (Suppl. 12) 1491-1496.
  • 33 Gartner S. HIV infection and dementia. Science 2000; 287 5453 602-604.
  • 34 Giesen HJ von. et al. HIV Dementia scale and psychomotor slowing-the best methods in screening for neuro-AIDS. J Neuropsychiatry Clin Neurosci 2005; 17 (Suppl. 02) 185-191.
  • 35 Grant I. Neurocognitive disturbances in HIV. Int Rev Psychiatry 2008; 20 (Suppl. 01) 33-47.
  • 36 Harrington PR. et al. Compartmentalized human immunodeficiency virus type 1 present in cerebrospinal fluid is produced by shortlived cells. J Virol 2005; 79 (Suppl. 13) 7959-7966.
  • 37 Haughey NJ. et al. Converging roles for sphingolipids and cell stress in the progression of neuro- AIDS. Front Biosci 2008; 13: 5120-5130.
  • 38 Hersh BP. et al. Parkinsonism as the presenting manifestation of HIV infection: improvement on HAART. Neurology 2001; 56 (Suppl. 02) 278-279.
  • 39 Iudicello JE. et al. Cognitive mechanisms of switching in HIV-associated category fluency deficits. J Clin Exp Neuropsychol. 2008 Epub ahead of print.
  • 40 Janssen R. et al. Human immunodeficiency virus (HIV) infection and the nervous system: report from the American Academy of Neurology AIDS Task Force. Neurology 1989; 39 (Suppl. 01) 119-122.
  • 41 Kaul M, Lipton SA. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci USA 1999; 96 (Suppl. 14) 8212-8216.
  • 42 Kaul M. et al. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001; 410 6831 988-994.
  • 43 Keblesh J, Hu D, Xiong H. Voltage-gated Potassium Channels in Human Immunodeficiency Virus Type-1 (HIV-1)-associated Neurocognitive Disorders. J Neuroimmune Pharmacol. 2008 Epub ahead of print.
  • 44 Koutsilieri E. et al. Selegiline completely restores choline acetyltransferase activity deficits in simian immunodeficiency infection. Eur J Pharmacol 2001; 411 1-2 R1-R2.
  • 45 Letendre S, McCutchan JA, Ellis RJ. Neurologic complications of HIV disease and their treatment. Top HIV Med 2008; 16 (Suppl. 01) 15-22.
  • 46 Linerli KJ, Hall CD, Robertson KR. Effects of retroviral therapy on cognitive impairement. Curr HIV/AIDS Rep 2008; 5 (Suppl. 02) 64-71.
  • 47 Lipton SA. Memantine prevents HIV coat protein- induced neuronal injury in vitro. Neurology 1992; 42 (Suppl. 07) 1403-1405.
  • 48 Major EO. et al. HIV-associated dementia. Science 2000; 288 5465 440-442.
  • 49 McArthur JC. HIV dementia: an evolving disease. J Neuroimmunol 2004; 157 1-2 3-10.
  • 50 McArthur JC. et al. Neurological complications of HIV infection. Lancet Neurol 2005; 4 (Suppl. 09) 543-555.
  • 51 Minagar A. et al. NeuroAIDS: characteristics and diagnosis of the neurological complications of AIDS. Mol Diagn Ther 2008; 12 (Suppl. 01) 25-43.
  • 52 Nath A. et al. Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann Neurol 2000; 47 (Suppl. 02) 186-194.
  • 53 Navia BA. et al. A phase I/II trial of nimodipine for HIV-related neurologic complications. Neurology 1998; 51 (Suppl. 01) 221-228.
  • 54 Navia BA, Rostasy K. The AIDS dementia complex: clinical and basic neuroscience with implications for novel molecular therapies. Neurotox Res 2005; 8 1-2 3-24.
  • 55 Price RW. The two faces of HIV infection of cerebrospinal fluid. Trends Microbiol 2000; 8 (Suppl. 09) 387-391.
  • 56 Rearden A. et al. Novel expression of PINCH in the central nervous system and its potential as a biomarker for human immunodeficiency virus-associated neurodegeneration. J Neurosci Res. 2008 Epub ahead of print.
  • 57 Robertson KR. et al. Highly active antiretroviral therapy improves neurocognitive functioning. J Acquir Immune Defic Syndr 2004; 36 (Suppl. 01) 562-566.
  • 58 Ruff RM. et al. Benton controlled oral word association test: reliability and updated norms. Arch Clin Neuropsychol 1996; 11 (Suppl. 04) 329-338.
  • 59 Sacktor N. et al. Transdermal selegiline in HIV-associated cognitive impairment: pilot, placebocontrolled study. Neurology 2000; 54 (Suppl. 01) 233-235.
  • 60 Sacktor N. et al. CSF antiretroviral drug penetrance and the treatment of HIV-associated psychomotor slowing. Neurology 2001; 57 (Suppl. 03) 542-544.
  • 61 Sacktor N. The epidemiology of human immunodeficiency virus associated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol 2002; 8 (Suppl. 02) 115-121.
  • 62 Schmitt FA. et al. Neuropsychological outcome of zidovudine (AZT) treatment of patients with AIDS and AIDS-related complex. N Engl J Med 1988; 319 (Suppl. 24) 1573-1578.
  • 63 Staprans S. et al. Time course of cerebrospinal fluid responses to antiretroviral therapy: evidence for variable compartmentalization of infection. Aids 1999; 13 (Suppl. 09) 1051-1061.
  • 64 Toggas SM. et al. Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res 1996; 706 (Suppl. 02) 303-307.
  • 65 Woods SP. et al. HIV-associated prospective memory impairment increases risk of dependence in everyday functioning. Neuropsychology 2008; 22: 110-117.