Nervenheilkunde 2010; 29(10): 641-647
DOI: 10.1055/s-0038-1628821
Schwindel
Schattauer GmbH

Funktionelle Bildgebung des vestibulären Systems

Functional imaging of the vestibular system
M. Dieterich
1   Klinik und Poliklinik für Neurologie, Ludwig-Maximilians-Universität München, Klinikum Großhadern
,
T. Brandt
2   Institut für klinische Neurowissenschaften, München
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen am: 18. Januar 2010

angenommen am: 23. Januar 2010

Publikationsdatum:
31. Januar 2018 (online)

Zusammenfassung

In den letzten Jahren konnte mithilfe der funktionellen Bildgebung des menschlichen Gehirns neue Erkenntnisse zum Gleichgewichtssystem gewonnen werden. Basis für die Auswertung dieser Untersuchungen waren die Kenntnisse aus älteren neurophysiologischen und Tracer-Studien an Tieren zum vestibulären System im Kortex. Aus diesen Studien sind mehrere Areale im Großhirn, vor allem im temporo-parietalen Kortex, bekannt, die ein Netzwerk bilden mit dem Zentrum im parietoinsulären vestibulären Kortex (PIVC). Heute weiß man aus funktionellen Bildgebungsstudien, dass ein solches Netzwerk auch beim Menschen existiert und die Aktivierungen des Netzwerkes während vestibulärer Stimulation nicht gleichmäßig in beiden Hemisphären verteilt sind, sondern mit einer Betonung in der rechten Hemisphäre bei Rechtshändern und in der linken Hemisphäre bei Linkshändern sowie ipsilateral zum stimulierten Ohr. Diese Aktivierungs-Deaktivierungsmuster Gesunder sind spezifisch verändert bei Patienten mit vestibulären Erkrankungen, je nachdem welche Schaltstelle im vestibulären System geschädigt wurde.

Summary

In this article we will discuss our current knowledge of multisensory vestibular structures and their functions in the human cortex. Most of it derives from brain activation studies with PET and fMRI in humans conducted over the last decade. They have confirmed the existence of several separate and distinct cortical areas that were identified earlier by tracer and electrophysiological studies in animals. The patterns of activations and deactivations during vestibular stimulations in healthy subjects have been compared with those in patients with acute and chronic peripheral and central vestibular disorders. The following reviews what is presently known about the interconnections of vestibular structures, their activations and interactions with other sensory modalities, and the changes that result from strategic unilateral peripheral and central vestibular lesions such as vestibular neuritis and bilateral vestibular failure, on the one hand, and central vestibular lesions due to e.g. unilateral ischemic infarctions of the posterolateral thalamus, on the other.

 
  • Literatur

  • 1 Arbusow V. et al. Distribution of herpes simplex virus type I in human geniculate and vestibular ganglia: implications for vestibular neuritis. Ann Neurol 1999; 46: 416-419.
  • 2 Arbusow V. et al. Distribution of HSV-1 in Human Geniculate and Vestibular Ganglia: Implications for Vestibular Neuritis. Ann NY Acad Sci 2003; 1004: 409-413.
  • 3 Arbusow V. et al. HSV-1 not only in human vestibular ganglia but also in the vestibular labyrinth. Audiol Neuro Otol 2000; 06: 259-262.
  • 4 Baloh RW. Vestibular neuritis. New Engl J Med 2003; 48: 1027-1032.
  • 5 Baloh RW. et al. Vestibular neuritis: clinical-pathologic correlation. Otolaryngol Head Neck Surg 1996; 114: 586-592.
  • 6 Bense S. et al. Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 2004; 56: 624-630.
  • 7 Bense S. et al. Preserved visual-vestibular interaction in patients with bilateral vestibular failure. Neurology 2004; 63: 122-128.
  • 8 Bense S. et al. Three determinants of vestibular hemispheric dominance during caloric stimulation. Ann N Y Acad Sci 2003; 1004: 440-445.
  • 9 Bense S. et al. Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 2001; 85: 886-899.
  • 10 Brandt T, Dieterich M. The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 1999; 871: 293-312.
  • 11 Brandt T, Dieterich M, Strupp M. Vertigo – Leitsymptom Schwindel. Darmstadt: Steinkopff; 2003
  • 12 Brandt Th, Bartenstein P, Janek A, Dieterich M. Reciprocal inhibitory visual-vestibular interaction: visual motion stimulation deactivates the parietoinsular vestibular cortex. Brain 1998; 121: 1749-1758.
  • 13 Büttner U, Henn V. Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res 1976; 103: 127-132.
  • 14 Deecke L, Schwarz DWF, Fredrickson JM. Cortical projection of group I muscle afferents to areas 2, 3a, and the vestibular field in the rhesus monkey. Exp Brain Res 1973; 17: 516-526.
  • 15 Deecke L, Schwarz DWF, Fredrickson JM. Nucleus ventroposterior inferior (VPI) as the thalamic relay in the rhesus monkey. I. Field potential investigation. Exp Brain Res 1974; 20: 88-100.
  • 16 Dieterich M. rFunktionelle Bildgebung des vestibulären Systems. In: Hören und Gleichgewicht im Blick des gesellschaftlichen Wandels. 7. Henning Symposium. P. K. Plinkert (Hrsg.). Wien: Springer; 2009
  • 17 Dieterich M. Veränderungen im Kortex nach peripher- und zentral-vestibulären Läsionen. In: Der Gleichgewichtssinn. Neues aus Forschung und Klinik. 6. Henning Symposium. H. Scherer: (Hrsg). Wien: Springer; 2008
  • 18 Dieterich M. Functional brain imaging: a window into the visuo-vestibular systems. Curr Opin Neurol 2007; 20: 12-18.
  • 19 Dieterich M, Brandt T. Functional imaging of peripheral and central vestibular disorders. Brain 2008; 131: 2538-52.
  • 20 Dieterich M, Brandt T. Thalamic infarctions: Differential effects on vestibular function in roll plane (35 patients). Neurology 1993; 43: 1732-40.
  • 21 Dieterich M. et al. Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study). Brain 2007; 30: 2108-2116.
  • 22 Dieterich M. et al. Thalamic infarctions cause sidespecific suppression of vestibular cortex activation. Brain 2005; 128: 2052-67.
  • 23 Dieterich M. et al. Dominance for vestbular cortical function in the non-dominant hemisphere. Cerebral Cortex 2003; 13 (09) 994-1007.
  • 24 Dieterich M, Bucher SF, Seelos KC, Brandt T. Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance: an fMRI study. Brain 1998; 121: 1479-1495.
  • 25 Fasold O. et al. Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. NeuroImage 2002; 17: 1384-1393.
  • 26 Grüsser OJ, Pause M, Schreiter U. Localization and responses of neurons in the parieto-insular cortex of awake monkeys (Macaca fascicularis). J Physiol (Lond) 1990; 430: 537-557.
  • 27 Grüsser OJ, Pause M, Schreiter U. Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol (Lond) 1990; 430: 559-583.
  • 28 Guldin WO, Grüsser OJ. The anatomy of the vestibular cortices of primates. In: Collard M, Jeannerod M, Christen Y. (eds.), Le cortex vestibulaire. Editions IRVINN. Paris: Ipsen; 1996
  • 29 Janzen J. et al. Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system. NeuroImage 2008; 42 (04) 1508-1518.
  • 30 Lobel E. et al. Functional MRI of galvanic vestibular stimulation. J Neurophysiol 1998; 80: 2699-2709.
  • 31 Masdeu JC, Gorelick PB. Thalamic astasia: inability to stand after unilateral thalamic lesions. Ann Neurol 1988; 23: 596-603.
  • 32 Mast FW, Merfeld DM, Kosslyn SM. Visual mental imagery during caloric vestibular stimulation. Neuropsychologia 2006; 44 (01) 101-9.
  • 33 Nadol Jr JB. Vestibular neuritis. Otolaryngol Head Neck Surg 1995; 112: 162-172.
  • 34 Schuknecht HF. Pathology of the ear. Philadelphia: Lea & Febinger; 1993
  • 35 Schuknecht HF, Kitamura K. Vestibular neuritis. Ann Otol Rhinol Otolaryngol 1981; 90 (Suppl. 78) 1-19.
  • 36 Sekitani T, Imate Y, Noguchi T, Inokuma T. Vestibular neuronitis: epidemiological survey by questionnaire in Japan. Acta Otolaryngol (Stockh) 1993; Suppl 503: 9-12.
  • 37 Shmuel A. et al. Negative functional MRI response correlates wuth decreases in neuronal activity in monkey visual area V1. Nature Neuroscience 2006; 09: 569-577.
  • 38 Stephan T. et al. FMRI of galvanic vestibular stimulation with alternating currents at different frequencies. NeuroImage 2005; 26: 721-732.
  • 39 Suzuki M. et al. Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Cognitive Brain Research 2001; 12: 441-449.
  • 40 Theil D. et al. Prevalence of HSV-1 LAT in human trigeminal, geniculate, and vestibular ganglia and its implication for cranial nerve syndromes. Brain Pathol 2001; 11: 408-413.
  • 41 Wenzel R. et al. Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain 1996; 119: 101-110.
  • 42 Zingler VC. et al. Causative factors and epidemiology of bilateral vestibulopathy in 255 patients. Ann Neurol 2007; 61: 524-532.