Nuklearmedizin 1994; 33(01): 30-32
DOI: 10.1055/s-0038-1629673
Original Article
Schattauer GmbH

Detection of Diffuse Skeletal Lesions by Monitoring the Kinetics of Labeled Phosphonate

D. Dodig
1   From the Clinical Department of Nuclear Medicine and Radiation Protection, University Hospital Rebro, Zagreb, Croatia
,
S. Popović
1   From the Clinical Department of Nuclear Medicine and Radiation Protection, University Hospital Rebro, Zagreb, Croatia
,
M. Poropat
1   From the Clinical Department of Nuclear Medicine and Radiation Protection, University Hospital Rebro, Zagreb, Croatia
,
S. Težak
1   From the Clinical Department of Nuclear Medicine and Radiation Protection, University Hospital Rebro, Zagreb, Croatia
,
L. Šimonović
1   From the Clinical Department of Nuclear Medicine and Radiation Protection, University Hospital Rebro, Zagreb, Croatia
› Author Affiliations
Further Information

Publication History

Received: 10 September 1992

in revised form: 04 January 1993

Publication Date:
04 February 2018 (online)

Summary

A method of detecting of diffuse skeletal involvement in patients with metastatic tumors or with metabolic diseases is presented. The study consisted of 31 patients without bone disease and of 26 selected patients with diffuse skeletal involvement. The kinetics of 99mTc-dicarboxypropane diphos-phonate (DPD) were calculated by monitoring the plasma and urine concentrations up to 5 hours after administration. Using these data, the renal clearance as well as the increase in urinary excretion of 99mTc-DPD were determined. The results indicate that measurement of the quantity of 99mTc-DPD excreted in the urine after 3 hours allows a reliable separation of the patients with diffuse skeletal lesions from normals. Other calculations such as renal clearance as well as the drop in plasma concentration were less sensitive. The test may be performed simultaneously with bone scintigraphy without additional radiation burden to the patient.

Zusammenfassung

Eine Methode zum Nachweis einer diffusen Knochenbeteiligung bei Patienten mit metastasierenden Tumoren oder mit metabolischen Erkrankungen wird vorgestellt. Bei 31 Patienten ohne Knochenerkrankung und bei 26 ausgesuchten Patienten mit diffuser knöcherner Beteiligung wurde die Kinetik von 99mTc-Dicarboxydiphosphonat (DPD) verfolgt, indem die Plasma- und Urinkonzentrationen bis zu 5h nach Applikation verfolgt wurden. Hieraus wurden die renale Clearance und die Zunahme der Urinausscheidung von 99mTc-DPD bestimmt. Die Ergebnisse zeigen, daß eine quantitative Bestimmung der 99mTc-DPD-Urinausscheidung eine zuverlässige Unterscheidung von Patienten mit diffusem Skelettbefall vom Normalen erlaubt. Andere Verfahren wie die renale Clearance oder die Abnahme der Plasmakonzentration erwiesen sich als weniger zuverlässig. Der Test kann gleichzeitig mit der Knochenszintigraphie ohne zusätzliche Strahlenexposition für den Patienten durchgeführt werden.

 
  • Literatur

  • 1 Arnold JS. Kinetic analysis of bone imaging agents. In: Principles of radiopharmacolo-gy. Colombetti EG. (ed). Florida: CRC Press, Boca Raton; 1979. vol III: p 205.
  • 2 Ayres J, Hilson AJW, Maisey MN, Laurent R, Panay GS, Saunders AJ. An improved method for sacroiliac joint imaging: A study of normal subjects, patients with sacro-iliitis and patients with low back pain. Clin Radiol 1981; 32: 441-5.
  • 3 Charkes DN, Makler TP, Philips C. Studies of skeletal tracer kinetics. A digital computer solution of five compartment model of 18-F fluoride kinetics in humans. J Nucl Med 1978; 19: 1301-9.
  • 4 Dodig D, Popovic S, Domljan Z. Influence of age on quantitative sacro-iliac joint imaging. Eur J Nucl Med 1984; 177-9.
  • 5 Fogelman I, Bessent RG, Turner JG, Citrin D, Boyle IT, Greig WR. The use of whole-body retention of 99mTc diphosphonate in diagnosis of metabolic bone disease. J Nucl Med 1978; 19: 270-3.
  • 6 Fogelman I, Citrin DL, Turner JG, Hay ID, Bessent RG, Boyle IT. Semi-quantitative interpretation of bone scan in metabolic bone disease. Definition and validation of metabolic index. Eur J Nucl Med 1979; 4: 287-9.
  • 7 Kasal B, Popovic S, Koracin V, Erjavec D. Total body 131I retention measurement using a whole-body scanner. Radiol Iugosl 1984; 441-3.
  • 8 King MA, Weber DA, Casarett GW, Burgener FA, Corriveau AJ. A study of irradiated bone. Part II: Changes in 99mTc-pyrophosphate bone imaging. J Nucl Med 1980; 21: 22-30.
  • 9 Langhamer H, Sinterman R, Hor G, Pabst HW. Serial bone scintigraphy for assesing the effectiveness of treatment of osseous metastases from prostatic cancer. J Nucl Med 1978; 17: 87-90.
  • 10 Martin N, Fogelman I, Bessent RG. Measurement of 24-hour whole body retention of 99mTc-HEDP by gama camera. J Nucl Med 1981; 22: 542-5.
  • 11 Rosenthall L, Arzoumanian A. Total body retention measurement of 99mTc-MDP using a simple detector. Clin Nucl Med 1983; 8: 210-3.
  • 12 Schiimichen C, Krause Th, Umbach G, Wolff T. Localization of 99mTc-diphospho-nate in newly formed bone matrix as a measure of bone lesion detectability. Nucl Med 1988; 27: 8-11.
  • 13 Schiimichen C. Effects of renal failure and metabolic diseases upon bone scanning in children. Ann Radiol 1883; 26: 498-504.
  • 14 Thomsen K, Johansen J, Nilas L, Christiansen C. Whole body retention of 99mTc-diphosphonate. Relation to biochemical indices of bone turnover and to total body calcium. Eur J Nucl Med 1987; 13: 32-5.
  • 15 Thomsen K, Nilas L, Mogensen T, Christiansen C. Determination of bone turnover by urinary excretion of 99mTc. MDP 1986; 12: 342-5.
  • 16 Warner GT, Oliver R. A whole body counter for clinical measurements utilizing the shadow technique. Phys Med Biol 1966; 11: 83-94.
  • 17 Zorn-Bopp E, Bull U, Munzinger W, Lang P, Moser A. Die Ganzkorperretention von 99mTc-Methylen-Diphosphonat bei Skeletterkrankungen. Nucl-Med 1983; 22: 24-30.