Nuklearmedizin 1997; 36(01): 19-22
DOI: 10.1055/s-0038-1629727
Original Article
Schattauer GmbH

Ganzkörperverteilung von Tc-99m-Sestamibi nach pharmakologischer Belastung mit Arbutamin und Dipyridamol im Vergleich zum Ruhezustand

Tc-99m-Sestamibi Whole-Body Distribution after Stress Testing with Arbutamine and Dipyridamole: a Comparison with Resting Condition
J. Kotzerke
1   Aus der Abteilung Nuklearmedizin und Innere Medizin, Universität Ulm, Deutschland
,
K. Bergmann
1   Aus der Abteilung Nuklearmedizin und Innere Medizin, Universität Ulm, Deutschland
,
S. Glatz
1   Aus der Abteilung Nuklearmedizin und Innere Medizin, Universität Ulm, Deutschland
,
M. Höher
1   Aus der Abteilung Nuklearmedizin und Innere Medizin, Universität Ulm, Deutschland
,
S. N. Reske
1   Aus der Abteilung Nuklearmedizin und Innere Medizin, Universität Ulm, Deutschland
› Author Affiliations
Further Information

Publication History

Eingegangen: 09 May 1996

in revidierter Form: 17 June 1996

Publication Date:
04 February 2018 (online)

Zusammenfassung

Ziel: Der neue Beta-adrenerge Rezeptoren-Agonist Arbutamin (GenESA®, Gensia Europe Ltd., Berkshire, England) wurde speziell für den pharmakologischen Streß zum Nachweis einer koronaren Herzerkrankung entwickelt und stellt damit auch für die Belastungsmyokardszintigraphie eine Option dar. Die pharmakologische Wirkung kann im Vergleich zum Vasodilatator Dipyridamol anhand der Ganzkörper-Aktivitätsverteilung nach Applikation von Tc-99m-Sestamibi bestimmt werden. Methoden: Untersucht wurden 9 Patienten nach Applikation von Tc-99m-Sestamibi unter Ruhebedingung, nach Steigerung der myokardialen Perfusion durch Infusion von Arbutamin und unter maximaler Vasodilatation durch Infusion von Dipyridamol. Ergebnisse: Nach Gabe von Arbutamin bestand eine szintigraphisch meßbare verminderte Radiotracereinlagerung in der unteren Extremität. Gegenüber Dipyridamol war die myokardiale Akkumulation von Tc-99m-Sestamibi trotzdem vermindert, was sich neben dem relativen Anteil des Herzens an der Ganzkörperaktivität (2,1% ± 0,5% gegenüber 2,4% ± 0,4%, p <0,05) auch an einem niedrigeren Herz-Lungen-Quotienten (2,5 ± 0,4 gegenüber 2,8 ± 0,5, p <0,05) zeigte. Schlußfolgerung: Nach Infusion von Arbutamin ist sowohl der Anteil von myokardial deponiertem Tc-99m-Sestamibi als auch der Kontrast des Myokards zur umgebenden Lunge geringer als nach Gabe von Dipyridamol. Ob dieser Unterschied für die Diagnose myokardialer Perfusionsstörungen mit Tc-99m-Sestamibi relevant ist, muß noch überprüft werden.

Summary

Aim: Arbutamine is a new catecholamine that has been developed as a pharmacologic stress agent for the diagnosis of coronary artery disease. Optionally, it can be used in myocardial scintigraphy. The pharmacologic effect compared to dipyridamole was assessed looking at the whole body distribution of Tc-99m-Sestamibi. Methods: 9 patients were investigated after injection of Tc-99m-Sestamibi during rest, after infusion of arbutamine, and after vasodilatation with dipyridamole. Results: Infusion of arbutamine results in a measurable diminished radiotracer deposition in the lower limb as compared to dipyridamole. The amount of myocardial activity of Tc-99m-sestamibi, however, is also reduced as shown by the percentage of myocardial acitivity compared to the whole body distribution (2.5% ± 0.4% for arbutamine vs. 2.8% ± 0.5% for dipyridamole). In addition, the heart/lung ratio is lower after application of arbutamine (2.1 % ± 0.5% vs. 2.4% ± 0.4%). Conclusion: After infusion of arbutamine the percentage of myocardial activity as well as the contrast of the myocardium to the surrounding lungs is decreased as compared to dipyridamole. Further studies should reveal whether this difference is relevant in diagnosing coronary artery disease.

 
  • LITERATUR

  • 1 Alazraki NP, Krawczynska EG, DePuey EG. et al. Reproducibility of thallium-201 exercise SPECT studies. J Nucl Med 1994; 35: 1237-44.
  • 2 Boucher CA, Brewster DC, Darling C. et al. Determination of cardiac risk by dipyrid-amole-thallium imaging before peripheral vascular surgery. N Engl J Med 1985; 312: 389-94.
  • 3 Brown KA. Prognostic value of thallium-201 myocardial perfusion imaging. A diagnostic tool comes of age. Circulation 1991; 83: 363-81.
  • 4 Brown KA, Boucher Ca, Okada RD. et al. Prognostic value of exercise thallium-201 imaging in patients presenting for evaluation of chest pain. J Am Coll Cardiol 1983; 1: 994-1001.
  • 5 Cerqueira MD, Verani MS, Schwaiger M. et al. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial registry. J Am Coll Cardiol 1994; 23: 384-9.
  • 6 Cohen JL, Chan KL, Jaarsma W. et al. Arbutamine echocardiography: efficacy and safety of a new pharmacologic stress agent to induce myocardial ischemia and detect coronary artery disease. J Am Coll Cardiol 1995; 26: 1168-75.
  • 7 Dennis CA, Pool PE, Perrins EJ. et al. Stress testing with closed-loop arbutamine as an alternative to exercise. J Am Coll Cardiol 1995; 26: 1151-8.
  • 8 ESC working group on exercise physiology, physiopathology and electrocardiography. Guidelines for cardiac exercise testing. Eur Hear J 1993; 14: 969-88.
  • 9 Hammond HK, McKirnan MD. Effects of dobutamine and arbutamine of regional myocardial function in a porcine model of myocardial ischemia. J Am Coll Cardiol 1994; 23: 475-82.
  • 10 Kiat H, Iskandrian AS, Villegas BJ, Starling MR, Berman DS. Arbutamine stress thallium-201 single-photon emission computed tomography using a computerized closed-loop delivery system. Multicenter trial for evaluation of safety and diagnostic accuracy. J Am Coll Cardiol 1995; 26: 1159-67.
  • 11 Leppo J, O’Briene J, Rothendler JA. et al. Dipyridamole thallium scintigraphy in the prediction of future cardiac events after acute myocardial infarction. N Engl J Med 1984; 310: 1014-8.
  • 12 Lette J. Safety of dipyridamol testing: preliminary results in 43,000 patients [abstract]. J Am Coll Cardiol 1993; 21: 207A.
  • 13 Marwick T, Willemart B, D’Hondt AM. et al. Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion. Comparison of Dobutamine and Adenosine using echocardiography and 99mTc-MIBI single photon emission computed tomography. Circulation 1993; 87: 345-54.
  • 14 Marwick TH, D’Hondt AM, Mairesse GH. et al. Comparative ability of dobutamine and exercise stress in inducing myocardial ischemia in active patients. Br Heart J 1994; 72: 31-8.
  • 15 Penell DJ, Ell PJ. Whole-body imaging of thallium-201 after six different stress regimens. J Nucl Med 1994; 35: 425-8.
  • 16 Pirelli S, Inglese E, Suppa M, Corrada E, Campolo L. Dipyridamole-thallium 201 scintigraphy in the early post infarction period. (Safety and accuracy in predicting the extent of coronoary disease and future recurrence of angina in patients suffering from their first myocardial infarction). Eur Hear J 1988; 9: 1324-31.
  • 17 Primeau M, Teillefer R, Essiambre R, Lambert R, Honos G. Technetium 99m SESTAMIBI myocardial perfusion imaging: comparison between treadmill, dipyridamole and trans-oesophageal atrial pacing »stress« tests in normal subjects. Eur J Nucl Med 1991; 18: 247-51.
  • 18 Stern S, Greenberg ID, Corne RA. Quantification of walking exercise required for improvement of dipyridamole thallium-201 image quality. J Nucl Med 1992; 33: 2061-6.
  • 19 Young M, Pan W, Wiesner J. et al. Characterization of arbutamine: a novel catecholamine stress agent for diagnosis of coronary artery disease. Drug development research 1994; 32: 19-28.