Methods Inf Med 2005; 44(03): 405-407
DOI: 10.1055/s-0038-1633984
Original Article
Schattauer GmbH

Image Analysis for cDNA Microarrays

J. Rahnenführer
1   Max Planck Institute for Informatics, Saarbrücken, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
06 February 2018 (online)

Summary

Objectives: We characterize typical problems encountered in microarray image analysis and present algorithmic approaches dealing with background estimation, spot identification and intensity extraction. Validation of the quality of resulting measurements is discussed.

Methods: We describe sources for errors in microarray images and present algorithms that have been specifically developed to deal with such experimental imperfections.

Results: For the image analysis of hybridization experiments, discriminating spot regions from a background is the most critical step. Spot shape detection algorithms, intensity histogram methods and hybrid approaches have been proposed. The correctness of final intensity estimates is difficult to verify. Nevertheless, the application of sophisticated algorithms provides a significant reduction of the possible information loss.

Conclusions: The initial analysis step for array hybridization experiments is the estimation of expression intensities. The quality of this process is crucial for the validity of interpretations from subsequent analysis steps.

 
  • References

  • 1 Leung YF, Cavalieri D. Fundamentals of cDNA microarray data analysis. Trends in Genetics 2003; 19 (11) 649-59.
  • 2 Petrov A, Shams S. Microarray image processing and quality control. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 2004; 38 (03) 211-26.
  • 3 Yang YH, Buckley MJ, Dudoit S, Speed TP. Comparison of methods for image analysis on cDNA microarray data. Journal of Computational and Graphical Statistics 2002; 11: 108-36.
  • 4 Hartelius K, Carstensen JM. Bayesian grid matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2003; 25 (02) 162-73.
  • 5 Angulo J, Serra J. Automatic analysis of DNA microarray images using mathematical morphology. Bioinformatics 2003; 19 (05) 553-62.
  • 6 Chen Y, Dougherty ER, Bittner ML. Ratio-based decisions and the quantitive analysis of cdna microarrays. Journal of Biomedical Optics 1997; 2: 364-74.
  • 7 Bozinov D, Rahnenführer J. Unsupervised technique for robust target separation and analysis of microarray spots through adaptive pixel clustering. Bioinformatics 2002; 18: 747-56.
  • 8 Rahnenführer J, Bozinov D. Hybrid clustering for microarray image analysis combining intensity and shape features. BMC Bioinformatics 2004; 5: 47
  • 9 Glasbey CA, Ghazal P. Combinatorial image analysis of DNA microarray features. Bioinformatics 2003; 19 (02) 194-203.
  • 10 Steinfath M, Wruck W, Seidel H, Lehrach H, Radelof U, O’Brien J. Automated image analysis for array hybridisation experiments. Bioinformatics 2001; 17 (07) 634-41.
  • 11 Jain AN, Tokuyasu TA, Snijders AM, Segraves R, Albertson DG, Pinkel D. Fully automatic quantification of microarray image data. Genome Res 2002; 12 (02) 325-32.
  • 12 Wierling CK, Steinfath M, Elge T, Schulze- Kremer S, Aanstad P, Clark M, Lehrach H, Herwig R. Simulation of DNA array hybridization experiments and evaluation of critical parameters during subsequent image and data analysis. BMC Bioinformatics 2002; 3: 29
  • 13 Balagurunathan Y, Dougherty ER, Chen Y, Bittner ML, Trent JM. Simulation of cDNA microarrays via a parameterized random signal model. J Biomed Opt 2002; 7 (03) 507-23.
  • 14 Wang X, Ghosh S, Guo SW. Quantitative quality control in microarray image processing and data acquisition. Nucleic Acids Res 2001; 29 (15) e75
  • 15 Chen Y, Kamat V, Dougherty ER, Bittner ML, Meltzer PS, Trent JM. Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics 2002; 18 (09) 1207-15.