Methods Inf Med 1970; 09(01): 53-57
DOI: 10.1055/s-0038-1635989
Original article
Schattauer GmbH

Genesis, Growth, and Therapy of Tumors: Mathematical Models

Entstehung, Wachstum und Therapie Von Tumoren: Mathematische Modelle
W. J. Bühler
1   From the Institut Jiir Dokumentation, Inlormation u. Statistik am Deutschen Krebsiorschungszentrum, Heidelberg (Direktor: Prot. Dr. med. Gustav Wagner)
› Author Affiliations
Further Information

Publication History

Publication Date:
10 February 2018 (online)

Many phenomena in biology and medicine display regularities which can be described mathematically (though quite often in a particular set of observations these regularities are rather well hidden behind irregularities introduced by factors unrelated to the phenomenon observed, i.e. by »biological variation« and »random fluctuations«). Mathematical models are constructed not only to describe and explain quantitative relationships but also to predict aspects of the phenomena which are not yet observed or even unobservable.

Tumor research is one of the areas in which mathematical work of this kind has been done in about the last two decades. Recent developments have been stimulated by the special sessions of the fourth and fifth Berkeley Symposia devoted to the subject. The purpose of the present paper is to give a survey over the work that has been done and to indicate current trends. An attempt has been made to provide the reader with a complete list of references.

Viele biologische und medizinische Erscheinungen zeigen Regelmäßigkeiten, die einer mathematischen Beschreibung zugänglich sind (allerdings werden diese Regelmäßigkeiten häufig überlagert von »biologischer Variation« und »zufälligen Schwankungen«, die in keiner direkten Beziehung zu der beobachteten Erscheinung stehen). Mit Hilfe mathematischer Modelle will man nicht nur quantitative Beziehungen beschreiben und verstehen, sondern auch Aussagen gewinnen über bisher nicht beobachtete oder gar der Beobachtung nicht zugängliche Aspekte des betrachteten Geschehens. Ein Gebiet, in dem seit etwa zwei Jahrzehnten in dieser Richtung’mathematisch gearbeitet wird, ist die Krebsforschung. Auf den letzten beiden Berkeley-Symposien über »Mathematische Statistik und Wahrscheinlichkeitstheorie« wurde diesem Anwendungsgebiet viel Aufmerksamkeit geschenkt. Diese Arbeit soll einen Überblick über den Stand der Entwicklung mathematischer Modelle in der Tumorforschung geben. Im Schriftenverzeichnis wurde versucht, die vorliegende Literatur möglichst vollständig zu erfassen.

 
  • References

  • 1 Arley N. Theoretical analysis of carcinogenesis. in: Neyman J. (ed.): Proc. 4th Berkeley Symp. Math. Statist. and Probability. 4: 1-18 Univ. of California Press; Berkeley and Los Angeles: 1961
  • 2 Arley N, Eker R. Mechanism of carcinogenesis. Advanc. biol. med. Phys 08: 375-436 1962;
  • 3 Arley N. Applications of stochastic models for the analysis of the mechanism of carcinogenesis. in Gurland J. (ed.): Stochastic Models in Medicine and Biology. 3-44 Univ. of Wisconsin Press; Madison: 1964
  • 4 Arley N, Iversen S. On the mechanism of experimental carcinogenesis III. Further development of the hit theory of carcinogenesis. Acta path, microbiol. scand 30: 21-53 1951;
  • 5 Arley N, Iversen S. On the mechanism of experimental carcinogenesis VI. Hit theoretical interpretation of some experiments of Berenblum and Shubik. Acta path, microbiol. scand 31: 164-171 1952;
  • 6 Arley N, Iversen S. On the mechanism of experimental carcinogenesis IX. Application of the hit theory to tumours produced by ultraviolet radiation. Acta path, microbiol. scand 33: 133-150 1953;
  • 7 Armitage P, Doll R. The age distribution of cancer and a multistage theory of carcinogenesis. Brit. J. Cancer 08: 1-12 1954;
  • 8 Armitage P, Doll R. A two stage theory of carcino genesis in relation to the age distribution of human cancer. Brit. J. Cancer 11: 161-169 1957;
  • 9 Armitage P, Doll R. Stochastic models for carcino genesis. in Neyman J. (ed.): Proc. 4th Berkeley Symp. Math. Statist, and Probability. 4: 19-38 Univ. of California Press; Berkeley and Los Angeles: 1961
  • 10 Ashley D. J. B. The two »hit« and multiple »hit« theories of carcinogenesis. Brit. J. Cancer 23: 313-328 1969;
  • 11 Barron B. A, Richart R. M. A statistical model of the natural history of cervical carcinoma based on a prospective study of 557 cases. J. nat. Cancer Inst 41: 1343-1353 1965;
  • 12 Bernard S. R. Mathematical biological approach to the problem of radiation-induced carcinogenesis (Abstract). Hlth Phys 08: 459 1963;
  • 13 Berry G, Wagner J. C. The application of a mathematical model describing the times of occurrence of mesotheliomas in rats following inoculation with asbestos. Brit. J. Cancer 23: 582-586 1969;
  • 14 Blum H. F. On the mechanism of cancer induction by ultraviolet radiation. J. nat. Cancer Inst 11: 463-495 1950;
  • 15 Blum H. F. Comparable models for carcinogenesis by ultra violet light and by chemical agents. in Neyman J. (ed.): Proc. 4th Berkeley Symp. Math. Statist, and Probability. 4 101-121 Univ. of California Press; Berkeley and Los Angeles: 1961
  • 16 Blumenson L. E, Bross I. D. J. A mathematical analysis of the growth and spread of breast cancer. Biometrics 25: 95-109 1969;
  • 17 Brodsky A, Thompson D. J. A stochastic model of carcinogenesis involving two stages of excitation (Abstract). Biometrics 23: 599 1967;
  • 18 Bross I. D. J, Blumenson L. E. A 2-disease model of breast cancer (Abstract). Biometrics 24: 229 1968;
  • 19 Bryan W. R. Virus carcinogenesis. in Neyman J. (ed.): 44 Proc. 4th Berkeley Symp. Math. Statist, and Probability. 4 123-152 Univ. of California Press; Berkeley and Los Angeles: 1961
  • 20 Bühler W. J. Quasi competition of two birth and death processes. Biometr. Z 09: 76-83 1967;
  • 21 Bühler W. J. Single cell against multicell hypothesis of tumor formation. in LeCam L, Neyman J. (ed.): Proc. 5th Berkeley Symp. Math. Statist, and Probability. 04 635-637 Univ. of California Press; Berkeley and Los Angeles: 1967
  • 22 Bühler W. J. Ein stochastisches Modell der Krebsentstehung (Abstract). Biometrics 23: 870 1967;
  • 23 Bühler W. J. Mathematische Aspekte der Krebsforschung. Naturwissenschaften 55: 121-125 1968;
  • 24 Burch P. R. J. Radiation carcinogenesis: A new hypothesis. Nature (Lond) 185: 135-142 1960;
  • 25 Clifford P. A stochastic model of survival where accumulated damage may be repaired. Ph. D. Dissertation; Berkeley/Calif: 1969
  • 26 Dessauer F. über einige Wirkungen von Strahlen, VII. Z. Physik 89: 421 1922;
  • 27 Dethlefsen L. A, Prewitt J. M. S, Mendelsohn M. L. Analysis of tumor growth curves. J. nat. Cancer Inst 40: 389-405 1968;
  • 28 Drogendijk A. C. Kybernetische Beiträge zur Lösung des Krebsproblems. Elektromedizin 13: 42-49 1968;
  • 29 Efroimson W. P. Eine Analyse der Steuermechanismen in der Kanzerogenese. in Kämmerer W, Thiele H. (Hrsg.): Probleme der Kybernetik. 05 243-276 AkademieVerlag; Berlin: 1964
  • 30 Engelbretii-Holm J, Iversen S. On the mechanism of experimental carcinogenesis II. The effect of different concentrations of 9,10-dimethyl-l,2-benzanthracene on skin carcinogenesis in mice. Acta path, microbiol. scand 29: 77-83 1951;
  • 31 Fisher J. C. Multiple-mutation theory of carcinogenesis. Nature (Lond) 181: 651-652 1958;
  • 32 Hoffmann J. G, Metropolis N, Gardiner V. Digital computer studies of cell multiplication by Monte Carlo methods. J. nat. Cancer Inst 17: 175-188 1956;
  • 33 Horn M. Stochastische Behandlung (Geburtsund Todesprozesse) von Vorgängen in Zellverbänden. Studia biophysica 14: 241-246 1969;
  • 34 Horn M, Grimm H. An application of birth and death processes in cancer chemotherapy. 37th Session of the ISI (London) 3-11 Sep. 1969; (mimeographed).
  • 35 Iosifescu M, Tautu P. Stochastic processes and applications in biology and medicine [Romanian]. Editura Academiei Socialiste Romania; Bucarest: 1968
  • 36 Iversen O. H, Bjerknes R. Kinetics of epidermal reaction to carcinogens. Acta path, microbiol. scand. Suppl 165: 1963.
  • 37 Iversen S, Arley N. On the mechanism of experimental carcinogenesis. Acta path, microbiol. scand 27: 773-803 1950;
  • 38 Iversen S, Arley N. On the mechanism of experimental carcinogenesis V. Application of the hit theory to virus-induced tumours. Acta path, microbiol. scand 31: 27-45 1952;
  • 39 Kendall D. G. Birth-and-death processes and the theory of carcinogenesis. Biometrika 47: 13-21 1960;
  • 40 Kiefer J. A model of feedback-controlled cell populations. J. theor. Biol 18: 263-279 1968;
  • 41 Kinzler G. Ein stochastisches Modell zur Theorie der Karzinogenesis nach Niels Arley. Math. Diplomarbeit; Heidelberg: 1966
  • 42 Klonecici W. A method for derivation of probabilities in a stochastic model of population growth for carcinogenesis. Colloquium Math 13: 273-288 1965;
  • 43 Klonecki W. On distribution of number of survivors and deaths in a birth and death process. Colloquium Math 16: 269 1967;
  • 44 Kreyberg H. J. A. Empirical relationship of lung cancer incidence to cigarette smoking and a stochastic model for the mode action of carcinogens. Biometrics 21: 839-857 1965;
  • 45 Laird A. K. Theoretical analysis of two models of cell differentiation. Z. Zellforsch 64: 32-37 1964;
  • 46 Laird A. K. Dynamics of tumor growth. Brit. J. Cancer 18: 490-502 1964;
  • 47 Laird A. K. Dynamics of tumor growth: Comparison of growth rates and extrapolation of growth curve to one cell. Brit. J. Cancer 19: 278-291 1965;
  • 48 Mantel N. The concept of threshold in carcinogenesis. Clin. Pharmacol. Ther 04: 104-109 1962;
  • 49 Neyman J. A two step mutation theory of carcinogenesis. Bull. int. Statist. Inst 38: 123-135 1961;
  • 50 Neyman J, Scott E. L. Statistical aspect of the problem of carcinogenesis. in LeCam L, Neyman J. (ed.): Proc. 5th Berkeley Symp. Math. Statist, and Probability. 4 745-776 Univ. of California Press; Berkeley and Los Angeles: 1967
  • 51 Niskanen E. E, Arley N. A stochastic model of carcinogenesis compared with mouse skin tumour enhancement after gastric instillation of 9,10-dimethyl-l,2-benzanthracene with subsequent local continuous exposure to ‘tween 40’. Nature (Lond) 199: 83-84 1963;
  • 52 Nordling C. O. A new theory on the cancer-inducing mechanism. Brit. J. Cancer 07: 68-72 1953;
  • 53 Pike M. C. A method of analysis of a certain class of experiments in carcinogenesis. Biometrics 22: 142-161 1966;
  • 54 Preiin R. T. A clonal selection theory of chemical carcinogenesis. J. nat. Cancer Inst 32: 1-17 1964;
  • 55 Priore R. L. Using a mathematical model in the evaluation of human tumor response to chemotherapy. J. nat. Cancer Inst 37: 635-647 1966;
  • 56 Saslaw W. C. A possible quantitative mechanism for carcinogenesis by ultraviolet radiation. Nature (Lond) 207: 592-593 1965;
  • 57 Schwartz M. A biomathematical approach to clinical tumor growth. Cancer 14: 1272-1294 1961;
  • 58 Schwarz H, Wolff G. Mathematische Betrachtungen zum Wachstum von Geschwülsten. Acta biol. med. germ 13: 378-379 1964;
  • 59 Stocks P. A study of the age curve for cancer of the stomach in connection with a theory of the cancer producing mechanism. Brit. J. Cancer 07: 407-417 1953;
  • 60 Stocks P. Recent epidemiological studies of lung cancer mortality, cigarette smoking and air pollution with discussion of a new hypothesis of causation. Brit. J. Cancer 20: 595-623 1966;
  • 61 Takaiiashi M, Inouye K. Characteristics of cube root growth of transplantable tumours. J. theor. Biol 14: 275-283 1967;
  • 62 Tucker H. G. A stochastic model for a two-stage theory of carcinogenesis. in Neyman J. (ed.): Proc. 4th Berkeley Symp. Math. Statist, and Probability. 4 387-403 Univ. of California Press; Berkeley and Los Angeles: 1961
  • 63 Wagner G, Bühler W. J. Uber Modelle zur Carcinogenese. in Lettré H, Wagner G. (Hrsg.): Aktuelle Probleme aus dem Gebiet der Cancerologie II. Zweites Heidelberger Symposion. 106-117 Springer-Verlag; Berlin-Heidelberg-New York: 1968
  • 64 Waugii W. A. O’N. Age dependence in a stochastic model of carcinogenesis. in Neyman J. (ed.): Proc. 4th Berkeley Symp. Math. Statist, and Probability. 4 405-413 Univ. of California Press; Berkeley and Los Angeles: 1961
  • 65 Weiss P, ICavanau J. L. A model of growth and growth control in mathematical terms. J. gen. Physiol 41: 1-47 1957;
  • 66 Wright J. K, Peto R. An elementary theory leading to non-linear dose-risk relationships for radiation carcinogenesis. Brit. J. Cancer 23: 547-553 1969;
  • 67 Zimmer K. G. Studies on Quantitative Radiation Biology. Oliver and Boyd; Edinburgh and London: 1961
  • 68 Cook P. J, Doll R, FellingHam S. A. A mathematical model for the age distribution of cancer in man. Int. J. Cancer 04: 93-112 1969;