Thromb Haemost 1971; 25(03): 566-579
DOI: 10.1055/s-0038-1654330
Originalarbeiten – Original Articles – Travaux Originaux
Schattauer GmbH

Aggregation of Fibrinogen and Its Degradation Products by Basic Proteins

An Electron Microscope Study
G. J Stewart*)
1   Department of Biological Sciences, Boston University and the Vascular Laboratory, Lemuel Shattuck Hospital, Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
,
S Niewiarowski**)
1   Department of Biological Sciences, Boston University and the Vascular Laboratory, Lemuel Shattuck Hospital, Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
› Author Affiliations
This study was supported by US Public Health Service Grants HE 09447 and HE 09203.
Further Information

Publication History

Publication Date:
28 June 2018 (online)

Summary

Fibrinogen and early fibrinogen degradation products (FDP) of plasmin digestion containing Fragment XfP gave highly ordered polymers of limited branching with protamines and synthetic polylysine (molecular weight 175,000). Histones, polylysine of molecular weight 2,500, granulocyte cationic protein and platelet factor 4 formed amorphous precipitates with fibrinogen and early FDP. Fibrin degradation products (fdp) containing complexes of Fragment X° formed highly ordered polymers of extensive branching with these basic proteins.

The splitting off of fibrinopeptides from fibrinogen and Fragment XfP was not essential for the formation of highly ordered polymers. However, in the presence of fibrinopeptides, high specificity of polymerizing agents such as basic protein is required. In the absence of fibrinopeptides, fibrin monomer or Fragment X° could polymerize after dissociation from complexes with other degradation products by any of the basic proteins.

It has been suggested that the polymerization of fibrinogen and its derivatives by basic proteins may be an important factor contributing to the formation and deposition of fibrin-like material in clinical conditions connected with the destruction of tissues (release of histones), damage of granulocytes (release of lysosomal cationic protein) and intravascular formation of platelet aggregates (release of platelet factor 4).

*) Present address: Dept. of Medicine, Health Sciences Center, Temple University, Philadelphia, Pa. 19140.


**) Present address: Department of Pathology, McMaster University, Hamilton, Ontario, Canada.


 
  • References

  • 1 Stewart G. J, Niewiarowski S. Nonenzymatic polymerization of fibrinogen by protamine sulfate: An electron microscope study. Biochim. biophys. Acta (Amst) 194: 462 1969;
  • 2 Niewiarowski S, Stewart G. J, Marder V. J. Nonenzymatic formation of highly ordered polymers from fibrinogen and fibrin degradation products. Biochim. biophys. Acta (Amst) 221: 326 1970;
  • 3 Felix K. Protamines. Advanc. Protein Chem 15: 1 1960;
  • 4 Kopec M, Wegrzynowicz S, Latallo Z. S. Precipitation of soluble fibrin monomers complexes (SFMC) by cellular basic proteins and the antagonistic effect of sulphonated mucopolysaccharides. Proc. Soc. exp. Biol. (N. Y) 135: 675 1970;
  • 5 Hawiger J, Collins R. D, Horn R. G. Precipitation of soluble fibrin monomer complexes by lysosomal fraction of polymorphonuclear leukocytes. Proc. Soc. exp. Biol. (N.Y) 131: 349 1969;
  • 6 Niewiarowski S, Poplawski A, Lipinski B, Farbiszewski R. The release of platelet clotting factors during aggregation and viscous metamorphosis. Exp. Biol. Med 03: 121 1968;
  • 7 Sela M, Katchalski E. Biological properties of polyaamino-acids. Advanc. Protein Chem 14: 391 1959;
  • 8 Shafrir E, de Vries A, Katchalski E. Action of poly aamino-acids on clotting of fibrinogen by thrombin. Proc. Soc. exp. Biol. (N.Y.) 87: 63 1954;
  • 9 Biezunski N, Shafrir E, de Vries A, Katchalski E. The action of polylysine on the conversion of fibrinogen into fibrin by coagulase thrombin. Biochem. J 59: 55 1955;
  • 10 Blombäck B, Blombäck M. Purification of human and bovine fibrinogen. Ark. Kemi 10: 415 1957;
  • 11 Marder V. J, Shulman N. R, Carrol W. R. The importance of intermediate degradation products of fibrinogen in fibrinolytic hemorrhage. Trans. Ass. Amer. Phsc 80: 156 1957;
  • 12 Butler J. A. V. Complexity and specificity of histones. In: Reuck A. V. S, Knight J. (Eds.), Histones, their Role in the Transfer of Genetic Information. CIBA Found. Study G.P. No. 24. Little Brown; Boston: 1966
  • 13 Bellair J. T, Mauritzen C. M. The fractionation of a histones from chicken erythrocyte nuclei. I. The effect of ethanol concentration and pH on the fractional properties of a histones. Aust. J. biol. Sci 17: 990 1964;
  • 14 Bellair J. T, Mauritzen C. M. The fractionation of ß histone from chicken erythrocyte nuclei. Aust. J. biol. Sci 18: 160 1964;
  • 15 Niewiarowski S, Farbiszewski R, Poplawski A. Studies on platelet factor 2 (PF2 fibrinogen activating factor) and platelet factor 4 (PF4 antiheparin factor). In: Kowalski E, Niewiarowski S. (Eds.). Biochemistry of Blood Platelets. 35 Academic Press; London/New York: 1967
  • 16 Godal H. C. The interaction of protamine with human fibrinogen and the significance of this interaction for the coagulation of fibrinogen. Scand. J. clin. Invest 12: 433 1960;
  • 17 Zeya H. I, Spitznagel J. K. Cationic proteins of polymorphonuclear leukocyte lysosomes. I. Resolution and antibacterial and enzymic activities. J. Bact 19: 750 1966;
  • 18 Doty P, Imahori K, Klemperer E. The solution properties and configurations of a poly- ampholytic polypeptide: copoly-1-lysine-1-glutamic acid. Proc. nat. Acad. Sci 44: 424 1958;
  • 19 Abraham E. P. Necrosis, calcification and autolysis. In: Florey H. (Ed.), General Pathology. 411 Saunders; Philadelphia/London: 1962
  • 20 Krough A. The Anatomy and Physiology of Capillaries (repr.ed. 1959). 12 Hafner Publishing; New York: 1959
  • 21 McGrath J. M, Stewart G. J. The effect of endotoxin on vascular endothelium. J. exp. Med 129: 833 1969;
  • 22 Stewart G. J. Effect of endotoxin on the ultrastructure of liver and blood cells of hamsters. Brit. J. exp. Path 51: 114 1970;
  • 23 Spaet T. H, Ts’ao C. H. Vascular endothelium and thrombogenesis. In: Sherry S, Brinkhous K. M, Genton E, Stengle J. M. (Eds.), Thrombosis, p.431. Nat. Acad. Sci. Washington: 1969
  • 24 Des Prez R. M, Horowitz H. I, Hook E. W. Effects of bacterial endotoxin on rabbit platelets. I. Platelet aggregation and release of platelet factors. J. exp. Med 114: 857 1961;
  • 25 Horn R. G, Collins R. D. Fragmentation of granulocytes in pulmonary capillaries during development of the generalized Shwartzman reaction. Lab. Invest 19: 451 1968;
  • 26 Shainoff J. R, Paqe I. H. Significance of cryoprofibrin in fibrinogen-fibrin conversion. J. exp. Med 116: 687 1962;
  • 27 Lipinski B, Worowski K, Jeljaszewicz J, Niewiarowski S, Rejniak L. Participation of soluble fibrin monomer complexes and platelet factor 4 in the generalized Shwartzman reaction. Thrombos Diathes haemorrh. (Stuttg) 20: 285 1968;
  • 28 Seaman A. J. The recognition of intravascular clotting. The plasma protamine paracoagula- tiontest. Arch, intern. Med 125: 1016 1970;
  • 29 Niewiarowski S, Gurewich V. Laboratory identification of intravascular coagulation. The serial dilution protamine sulphate test for the detection of fibrin monomer and fibrin degradation products. J. Lab. clin. Med 77: 675 1971;
  • 30 Margaretten W, McKay D. G. The role of the platelet in the generalized Shwartzman reaction. J. exp. Med 129: 585 1969;
  • 31 Lerner R. G, Rapaport S. I, Spitzer J. M. Endotoxin induced intravascular clotting: the need for granulocytes. Thrombos. Diathes.haemorrh. (Stuttg) 20: 430 1968;
  • 32 McKay D. G, Gitlin D, Craig J. M. Immunochemical demonstration of fibrin in the generalized Shwartzman reaction. Arch. Path 69: 270 1959;
  • 33 Bohle A, Krecke H. J, Miller F, Sitte H. Über die Natur des sogenannten Fibrinoids bei der generalisierten Shwartzmanschen Reaktion. Elektronenmikroskopische Untersuchungen an Kaninchennieren. In: Grabar P, Mieseher P. (Eds.), Immunopathology. 1st Internat. Symp., Schwabe, Basel. 1959. 0.339.
  • 34 Duffy J. L, Cinque T, Grishman J. E, Churg J. Intraglomerular fibrin, platelet aggregation and subendothelial deposits in lipoid nephrosis. J. clin. Invest 49: 251 1970;
  • 35 Lipinski B, Jeliaszewicz J. A hypothesis for the pathogenesis of the Generalized Shwartzman Reaction. J. infect. Dis 120: 160 1969;
  • 36 Movat H. Z, More R. H. The nature and origin of fibrinoid. Amer. J. clin. Path 28: 331 1957;
  • 37 McKay D. G. Progress in disseminated intravascular coagulation. Calif. Med Ill: 186 1969;
  • 38 Majno G. Ultrastructure of the vascular membrane. In: Hamilton W. F, Down P. (Eds.), Handbook of Physiology. Vol. Ill, 2293 Amer. Physiol. Soc; Washington: 1965