Subscribe to RSS
DOI: 10.1055/s-0040-1706606
Gold Catalysis of Non-Conjugated Haloacetylenes
This work was supported by the Deutsche Forschungsgemeinschaft (DFG; HA 2973/17-1).
![](https://www.thieme-connect.de/media/synthesis/202108/lookinside/thumbnails/ss-2020-t0402-op_10-1055_s-0040-1706606-1.jpg)
Abstract
Gold-catalyzed reactions of conjugated haloacetylenes are well known and usually result in the formation of addition or dimerization products. Herein, we report a gold-catalyzed reaction of non-conjugated haloacetylenes, which leads exclusively to the halogenated cyclization products. Remarkable is the gold-catalyzed reaction of tritylhaloacetylenes to haloindene derivatives, as mechanistic studies reveal that an 1,2-aryl shift occurs in the initially formed gold complex. The potential functionalization at the halogen atom and the wide scope of these cyclization reactions make them an attractive method for the construction of cyclic systems.
Key words
gold catalysis - haloacetylenes - indene - chromene - chromane - 1,2-aryl shift - cyclizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706606.
- Supporting Information
Publication History
Received: 28 July 2020
Accepted after revision: 21 October 2020
Article published online:
26 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Wu W, Jiang H. Acc. Chem. Res. 2014; 47: 2483
- 2 Viehe HG, Merényi R, Oth JF. M, Valange P. Angew. Chem. Int. Ed. 1964; 3: 746; Angew. Chem. 1964, 76: 888
- 3 Fabig S, Janiszewski A, Floß M, Kreuzahler M, Haberhauer G. J. Org. Chem. 2018; 83: 7878
- 4 García P, Izquierdo C, Iglesias-Sigüenza J, Díez E, Fernández R, Lassaletta JM. Chem. Eur. J. 2020; 26: 629
- 5 Kreuzahler M, Haberhauer G. Angew. Chem. Int. Ed. 2020; 59: 9433 ; Angew. Chem. 2020, 132, 9519
- 6 Kreuzahler M, Haberhauer G. Angew. Chem. Int. Ed. 2020; 59: 17739 ; Angew. Chem. 2020, 132, 17892
- 7 de Orbe ME, Zanini M, Quinonero O, Echavarren AM. ACS Catal. 2019; 9: 7817
- 8 Kreuzahler M, Daniels A, Wölper C, Haberhauer G. J. Am. Chem. Soc. 2019; 141: 1337
- 9 Kreuzahler M, Haberhauer G. J. Org. Chem. 2019; 84: 8210
- 10 Bai Y.-B, Luo Z, Wang Y, Gao J.-M, Zhang L. J. Am. Chem. Soc. 2018; 140: 5860
- 11 Mader S, Molinari L, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2015; 21: 3910
- 12 Nösel P, Lauterbach T, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2013; 19: 8634
- 13 Hashmi AS. K. Gold Bull. (Berlin, Ger.) 2004; 37: 51
- 14 Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
- 15 Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
- 16 Hashmi AS. K. Acc. Chem. Res. 2014; 47: 864
- 17 Hashmi AS. K, Lauterbach T, Nösel P, Vilhelmsen MH, Rudolph M, Rominger F. Chem. Eur. J. 2013; 19: 1058
- 18 Carvalho JF. S, Louvel J, Doornbos ML. J, Klaasse E, Yu Z, Brussee J, Ijzerman AP. J. Med. Chem. 2013; 56: 2828
- 19 Gulia N, Pigulski B, Charewicz M, Szafert S. Chem. Eur. J. 2014; 20: 2746
- 20 Wang Y, Ji K, Lan S, Zhang L. Angew. Chem. Int. Ed. 2012; 51: 1915 ; Angew. Chem. 2012, 124, 1951
- 21 Lykakis IN, Efe C, Gryparis C, Stratakis M. Eur. J. Org. Chem. 2011; 2011: 2334
- 22 Nevado C, Echavarren AM. Chem. Eur. J. 2005; 11: 3155
- 23 Subburaj K, Katoch R, Murugesh MG, Trivedi GK. Tetrahedron 1997; 53: 12621
- 24 Xu Z, Chen H, Wang Z, Ying A, Zhang L. J. Am. Chem. Soc. 2016; 138: 5515
- 25 Kreuzahler M, Adam A, Haberhauer G. Chem. Eur. J. 2019; 25: 12689
- 26 Nieto-Oberhuber C, Muñoz MP, López S, Jiménez-Núñez E, Nevado C, Herrero-Gómez E, Raducan M, Echavarren AM. Chem. Eur. J. 2006; 12: 1677
- 27 Fehr C, Vuagnoux M, Buzas A, Arpagaus J, Sommer H. Chem. Eur. J. 2011; 17: 6214
- 28 Nieto-Oberhuber C, López S, Echavarren AM. J. Am. Chem. Soc. 2005; 127: 6178
- 29 de Frémont P, Scott NM, Stevens ED, Nolan SP. Organometallics 2005; 24: 2411
- 30 Mézailles N, Ricard L, Gagosz F. Org. Lett. 2005; 7: 4133
- 31 Hashmi AS. K, Weyrauch JP, Rudolph M, Kurpejović E. Angew. Chem. Int. Ed. 2004; 43: 6545 ; Angew. Chem. 2004, 116, 6707
- 32 Nösel P, Moghimi S, Hendrich C, Haupt M, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2014; 356: 3755
- 33 Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett. 1989; 157: 200
- 34 Becke AD. Phys. Rev. A: At., Mol., Opt. Phys. 1988; 38: 3098
- 35 Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
- 36 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
- 37 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
- 38 Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H. Theor. Chim. Acta 1990; 77: 123
- 39 Murase H, Senda K, Senoo M, Hata T, Urabe H. Chem. Eur. J. 2014; 20: 317
- 40 Jongcharoenkamol J, Chuathong P, Amako Y, Kono M, Poonswat K, Ruchirawat S, Ploypradith P. J. Org. Chem. 2018; 83: 13184