Synthesis 2022; 54(22): 5119-5127
DOI: 10.1055/s-0041-1737342
paper

Formation of a Naphthalene Framework by Rhodium(III)-Catalyzed Double C–H Functionalization of Arenes with Alkynes: Impact of a Supporting Ligand and an Acid Additive

Vladimir B. Kharitonov
a   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
b   Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
,
Dmitry V. Muratov
a   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
,
Yulia V. Nelyubina
a   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
,
a   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
c   G. V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow 117997, Russian Federation
› Author Affiliations
The main synthetic work was supported by the Russian Science Foundation (grant # 17-73-30036).


Abstract

An efficient protocol has been developed for the synthesis of larger condensed arenes from aromatic hydrocarbons and internal alkynes. This protocol uses readily available [CpRhI2]n as a catalyst and Cu(OAc)2 as an oxidant and proceeds smoothly through undirected double C–H activation. The addition of trifluoroacetic acid has a crucial positive impact on the reaction selectivity and the yields of the target products. In contrast to the previously reported catalytic systems, the new conditions allow the use of both dialkyl- and diarylacetylenes with the same high efficiency.

Supporting Information



Publication History

Received: 08 November 2021

Accepted after revision: 14 December 2021

Article published online:
15 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For representative works, see:
    • 1a Li Y, Yu T, Su W, Wang Y, Zhao Y, Zhang H. Arab. J. Chem. 2020; 13: 4126
    • 1b Chen S.-W, Sang I.-C, Okamoto H, Hoffmann G. J. Phys. Chem. C 2017; 121: 11390
    • 1c Watanabe M, Chen K.-Y, Chang YJ, Chow TJ. Acc. Chem. Res. 2013; 46: 1606
    • 1d Bin J.-K, Hong J.-I. Org. Electron. 2011; 12: 802
    • 1e Figueira-Duarte TM, Del Rosso PG, Trattnig R, Sax S, List EJ. W, Müllen K. Adv. Mater. 2010; 22: 990
    • 2a Costa JC. S, Campos RM, Lima LM. S. S, Ribeiro da Silva MA. V, Santos LM. N. B. F. J. Phys. Chem. A 2021; 125: 3696
    • 2b Costa JC. S, Taveira RJ. S, Lima CF. R. A. C, Mendes A, Santos LM. N. B. F. Opt. Mater. 2016; 58: 51

      For selected reviews, see:
    • 3a Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 3b Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 3c Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644
    • 3d Larock RC. J. Organomet. Chem. 1999; 576: 111
    • 3e Arsenov MA, Loginov DA. INEOS OPEN 2021; 4: 133

      For Pd-catalyzed annulations, see:
    • 4a Bej A, Chakraborty A, Sarkar A. RSC Adv. 2013; 3: 15812
    • 4b Wang C, Rakshit S, Glorius F. J. Am. Chem. Soc. 2010; 132: 14006
    • 4c Yamashita M, Hirano K, Satoh T, Miura M. Org. Lett. 2009; 11: 2337
    • 4d Wu G, Rheingold AL, Geib SJ, Heck RF. Organometallics 1987; 6: 1941

      For Rh-catalyzed annulations, see:
    • 5a Inai Y, Usuki Y, Satoh T. Synthesis 2021; 53: 3029
    • 5b Molotkov AP, Arsenov MA, Kapustin DA, Muratov DV, Shepel’ NE, Fedorov YV, Smol’yakov AF, Knyazeva EI, Lypenko DA, Dmitriev AV, Aleksandrov AE, Maltsev EI, Loginov DA. ChemPlusChem 2020; 85: 334
    • 5c Honjo Y, Shibata Y, Tanaka K. Chem. Eur. J. 2019; 25: 9427
    • 5d Honjo Y, Shibata Y, Kudo E, Namba T, Masutomi K, Tanaka K. Chem. Eur. J. 2018; 24: 317
    • 5e Fukutani T, Hirano K, Satoh T, Miura M. J. Org. Chem. 2011; 76: 2867
    • 5f Uto T, Shimizu M, Ueura K, Tsurugi H, Satoh T, Miura M. J. Org. Chem. 2008; 73: 298

      For Ir-catalyzed annulations, see:
    • 6a Hirosawa K, Usuki Y, Satoh T. Adv. Synth. Catal. 2019; 361: 5253
    • 6b Datsenko VP, Nelyubina YV, Smol’yakov AF, Loginov DA. J. Organomet. Chem. 2018; 874: 7
    • 6c Ueura K, Satoh T, Miura M. J. Org. Chem. 2007; 72: 5362
    • 7a Loginov DA, Konoplev VE. J. Organomet. Chem. 2018; 867: 14
    • 7b Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 7c Drapeau MP, Goossen LJ. Chem. Eur. J. 2016; 22: 18654
    • 7d Molotkov AP, Timofeev SV, Loginov DA. Russ. Chem. Bull. 2021; 70: 1922
    • 8a Umeda N, Tsurugi H, Satoh T, Miura M. Angew. Chem. Int. Ed. 2008; 47: 4019
    • 8b Romanov-Michailidis F, Ravetz BD, Paley DW, Rovis T. J. Am. Chem. Soc. 2018; 140: 5370
  • 9 Wu Y.-T, Huang K.-H, Shin C.-C, Wu T.-C. Chem. Eur. J. 2008; 14: 6697
  • 10 Pham MV, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 3484
  • 11 Pototskiy RA, Kolos AV, Nelyubina YV, Perekalin DS. Eur. J. Org. Chem. 2020; 6019
  • 12 Kolos AV, Nelyubina YV, Sundararaju B, Perekalin DS. Organometallics 2021; 40: 3712
  • 13 Kharitonov VB, Runikhina SA, Nelyubina YV, Muratov DV, Chusov D, Loginov DA. Chem. Eur. J. 2021; 27: 10903
  • 14 Shibata Y, Tanaka K. Angew. Chem. Int. Ed. 2011; 50: 10917
  • 15 Loginov DA, Vinogradov MM, Starikova ZA, Petrovskii PV, Kudinov AR. Russ. Chem. Bull. 2004; 53: 1949
  • 16 Nagashima Y, Ishigaki S, Tanaka J, Tanaka K. ACS Catal. 2021; 11: 13591
    • 17a Tanaka J, Nagashima Y, Tanaka K. Org. Lett. 2020; 22: 7181
    • 17b Yoshimura R, Tanaka K. Chem. Eur. J. 2020; 26: 4969
    • 17c Lin W, Li W, Lu D, Su F, Wen T.-B, Zhang H.-J. ACS Catal. 2018; 8: 8070
    • 18a Vinogradov MM, Loginov DA. J. Organomet. Chem. 2020; 910: 121135
    • 18b Kharitonov VB, Ostrovskii VS, Nelyubina YV, Muratov DV, Chusov D, Loginov DA. J. Organomet. Chem. 2020; 925: 121468
    • 18c Loginov DA, Muratov DV, Nelyubina YV, Laskova J, Kudinov AR. J. Mol. Catal. A 2017; 426: 393
    • 18d Vinogradov MM, Starikova ZA, Loginov DA, Kudinov AR. J. Organomet. Chem. 2013; 738: 59
    • 18e Loginov DA, Muratov DV, Kudinov AR. Russ. Chem. Bull. 2008; 57: 1
  • 19 Loginov DA, Starikova ZA, Petrovskii PV, Holub J, Kudinov AR. Inorg. Chem. Commun. 2011; 14: 313
    • 20a Gunnoe TB, Schinski WL, Jia X, Zhu W. ACS Catal. 2020; 10: 14080
    • 20b Zhu W, Luo Z, Chen J, Liu C, Yang L, Dickie DA, Liu N, Zhang S, Davis RJ, Gunnoe TB. ACS Catal. 2019; 9: 7457
    • 20c Vaughan BA, Khani SK, Gary JB, Kammert JD, Webster-Gardiner MS, McKeown BA, Davis RJ, Cundari TR, Gunnoe TB. J. Am. Chem. Soc. 2017; 139: 1485
    • 20d Vaughan BA, Webster-Gardiner MS, Cundari TR, Gunnoe TB. Science 2015; 348: 421
  • 21 Herrmann WA, Krüger C, Goddard R, Bernal I. J. Organomet. Chem. 1977; 140: 73
    • 22a Rat CI, Soran A, Carga RA, Silverstru C. Adv. Organomet. Chem. 2018; 70: 233
    • 22b Silva LF. Jr, Carneiro VM. T. Synthesis 2010; 1059
  • 23 Ackermann L. Chem. Rev. 2011; 111: 1315
  • 24 Zakzeski J, Behn A, Head-Gordon M, Bell AT. J. Am. Chem. Soc. 2009; 131: 11098
  • 25 For the side debromination of arenes in CH activation reactions, see: Patureau FW, Nimphius C, Glorius F. Org. Lett. 2011; 13: 6346
  • 26 Pabst TP, Chirik PJ. Organometallics 2021; 40: 813
  • 27 For the synthesis of 6 from fluorene and fluoren-9-ol, see: Minabe M, Yoshida M, Suzuki K. Bull. Chem. Soc. Jpn. 1978; 51: 3373

    • For example, see:
    • 28a Vorobyeva DV, Petropavlovskikh DA, Godovikov IA, Nefedov SE, Osipov SN. Eur. J. Org. Chem. 2021; 1883
    • 28b Hoshino Y, Shibata Y, Tanaka K. Adv. Synth. Catal. 2014; 356: 1577
    • 28c Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
  • 29 Maekawa T, Segawa Y, Itami K. Chem. Sci. 2013; 4: 2369
    • 30a Sakabe K, Tsurugi H, Hirano K, Tetsuya Satoh T, Miura M. Chem. Eur. J. 2010; 16: 445
    • 30b Huang L.-Y, Aulwurm UR, Heinemann FW, Kisch H. Eur. J. Inorg. Chem. 1998; 1951
  • 31 Hsieh J.-C, Cheng C.-H. Chem. Commun. 2008; 26: 2992