Der Nuklearmediziner 2016; 39(04): 299-308
DOI: 10.1055/s-0042-113845
Neurobildgebung
© Georg Thieme Verlag KG Stuttgart · New York

PET/MR-Bildgebung in der Neurologie und Psychiatrie

PET/MR Imaging in Neuropsychiatric Disorders
P. Werner
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig, Leipzig
,
H. Barthel
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig, Leipzig
,
O. Sabri
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig, Leipzig
› Author Affiliations
Further Information

Publication History

Publication Date:
14 December 2016 (online)

Zusammenfassung

Hybride PET/MRT-Geräte sind mittlerweile seit 2011 verfügbar und an vielen Standorten weltweit installiert. Aufgrund des hohen Weichteilkontrasts der MRT im Vergleich zur CT ist die PET/MRT für die Hirnbildgebung besonders geeignet. Eine Vielzahl von Studien belegt mittlerweile die einfache Durchführbarkeit der PET/MRT und eine Vereinfachung der Untersuchungsabläufe beim Management neurodegenerativer Erkrankungen, in der Neuroonkologie und bei Epilepsie. Außerdem bietet sie den Anwendern eine hohe Flexibilität in der Hirnforschung. Diese Arbeit widmet sich grundlegenden technischen Aspekten der Hirn-PET/MRT, umreißt typische Arbeitsabläufe und Anwendungen und bietet einen Überblick über den bisherigen klinischen Stellenwert der hybriden PET/MRT in der Diagnostik von demenziellen Erkrankungen, in der Neuroonkologie, bei neurovaskulären Erkrankungen, Epilepsie, Multipler Sklerose und in der Grundlagenforschung.

Abstract

Hybrid PET/MR systems have been routinely available since 2011 and have been installed at many locations worldwide. Due to the high soft-tissue contrast in MRI as compared to CT, PET/MRI is particularly suitable for brain imaging. Numerous studies document the straight-forward operation of hybrid PET/MR systems and the subsequent simplification of hybrid imaging procedures in the management of neurodegenerative diseases, in neuro-oncology and epilepsy. It also provides users with a high degree of flexibility in brain research. Here, we summarize basic technical aspects of brain PET/MRI, outline typical workflows and applications and provide an overview of the recent clinical role of hybrid PET/MRI in the diagnosis of dementia, in neuro-oncology, in neurovascular diseases, epilepsy, multiple sclerosis and in basic brain research.

 
  • Literatur

  • 1 Albach FN, Brunecker P, Usnich T et al. Complete early reversal of diffusion-weighted imaging hyperintensities after ischemic stroke is mainly limited to small embolic lesions. Stroke 2013; 44: 1043-1048
  • 2 Albers GW, Goyal M, Jahan R et al. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME: CT Perfusion Volumes. Ann Neurol 2016; 79: 76-89
  • 3 An H, Ford AL, Eldeniz C et al. Reperfusion beyond 6 hours reduces infarct probability in moderately ischemic brain tissue. Stroke 2016; 47: 99-105
  • 4 Bailey DL, Pichler BJ, Gückel B et al. Combined PET/MRI: multi-modality multi-parametric imaging is here: summary report of the 4th international workshop on PET/MR imaging; February 23–27, 2015, Tübingen, Germany. Mol Imaging Biol 2015; 17: 595-608
  • 5 Barthel H, Gertz H-J, Dresel S et al. Florbetaben Study Group . Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 2011; 10: 424-435
  • 6 Barthel H, Gertz H-J, Dresel S et al. Florbetaben Study Group. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 2011; 10: 424-435
  • 7 Berkhemer OA, Fransen PSS, Beumer D et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372: 11-20
  • 8 Bisdas S, Ritz R, Bender B et al. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol 2013; 48: 295-301
  • 9 Bolcaen J, Acou M, Mertens K et al. Structural and metabolic features of two different variants of multiple sclerosis: A PET/MRI study. J Neuroimaging 2013; 23: 431-436
  • 10 Bolus NE, George R, Washington J et al. PET/MRI: the blended-modality choice of the future?. J Nucl Med Technol 2009; 37: 63-73
  • 11 Cabello J, Lukas M, Rota Kops E et al. Comparison between MRI-based attenuation correction methods for brain PET in dementia patients. Eur J Nucl Med Mol Imaging 2016
  • 12 Catana C, Drzezga A, Heiss W-D et al. PET/MRI for neurologic applications. J Nucl Med Off Publ Soc Nucl Med 2012; 53: 1916-1925
  • 13 Chuang M-T, Liu Y-S, Tsai Y-S et al. Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PloS One 2016; 11: e0141438
  • 14 Davis SM, Donnan GA, Parsons MW et al. EPITHET investigators. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008; 7: 299-309
  • 15 Davis TL, Kwong KK, Weisskoff RM et al. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 1998; 95: 1834-1839
  • 16 Ding Y-S, Chen B-B, Glielmi C et al. A pilot study in epilepsy patients using simultaneous PET/MR. Am J Nucl Med Mol Imaging 2014; 4: 459-470
  • 17 Drzezga A, Barthel H, Minoshima S et al. Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nucl Med Off Publ Soc Nucl Med 2014
  • 18 Dubois B, Feldman HH, Jacova C et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 2014; 13: 614-629
  • 19 Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci 2016; 113: 7900-7905
  • 20 Fragoso Costa P, Santos A, Vidovič B. 2015. Brain imaging: a technologist’s guide. Vienna: European Association of Nuclear Medicine;
  • 21 Frisoni GB, Bocchetta M, Chételat G et al. ISTAART’s NeuroImaging Professional Interest Area. Imaging markers for Alzheimer disease: which vs how. Neurology 2013; 81: 487-500
  • 22 Frisoni GB, Hampel H, O’Brien JT et al. Revised criteria for Alzheimer’s disease: what are the lessons for clinicians?. Lancet Neurol 2011; 10: 598-601
  • 23 Garibotto V, Heinzer S, Vulliemoz S et al. Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med 2013; 38: e13-e18
  • 24 Gilmore CD, Comeau CR, Alessi AM et al. PET/MR imaging consensus paper: a joint paper by the Society of Nuclear Medicine and Molecular Imaging Technologist Section and the Section for Magnetic Resonance Technologists. J Nucl Med Technol 2013; 41: 108-113
  • 25 Grouiller F, Garibotto V, Heinzer S et al. Quadrimodal localisation of epileptic focus using simultaneous EEG, (f)MRI and PET imaging. Klin Neurophysiol 2014; 45
  • 26 Hacke W, Furlan AJ, Al-Rawi Y et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009; 8: 141-150
  • 27 Henriksen OM, Larsen VA, Muhic A et al. Simultaneous evaluation of brain tumour metabolism, structure and blood volume using [18F]-fluoroethyltyrosine (FET) PET/MRI: feasibility, agreement and initial experience. Eur J Nucl Med Mol Imaging 2016; 43: 103-112
  • 28 Hitz S, Habekost C, Fürst S et al. Systematic comparison of the performance of integrated whole-body pet/mr imaging to conventional pet/ct for 18f-fdg brain imaging in patients examined for suspected dementia. J Nucl Med Off Publ Soc Nucl Med 2014; 55: 923-931
  • 29 Hsiao I-T, Huang C-C, Hsieh C-J et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging 2012; 39: 613-620
  • 30 Hutterer M, Hattingen E, Palm C et al. Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients. Neuro-Oncol 2015; 17: 784-800
  • 31 Jagust W. Time for tau. Brain 2014; 137: 1570-1571
  • 32 Jena A, Taneja S, Goel R et al. Reliability of semiquantitative 18F-FDG PET parameters derived from simultaneous brain PET/MRI: a feasibility study. Eur J Radiol 2014; 83: 1269-1274
  • 33 Jochimsen TH, Zeisig V, Schulz J et al. Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model. EJNMMI Phys 2016; 3: 2
  • 34 Jovin TG, Chamorro A, Cobo E et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015; 372: 2296-2306
  • 35 Juttukonda MR, Mersereau BG, Chen Y et al. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units. NeuroImage 2015; 112: 160-168
  • 36 Langen K-J, Watts C. Neuro-oncology: Amino acid PET for brain tumours – ready for the clinic? Nat. Rev Neurol 2016; 12: 375-376
  • 37 Lee KK, Salamon N. [18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am J Neuroradiol 2009; 30: 1811-1816
  • 38 Matías-Guiu JA, Cabrera-Martín MN, Matías-Guiu J et al. Amyloid PET imaging in multiple sclerosis: an 18F-florbetaben study. BMC Neurol 2015; 15-243
  • 39 McKhann GM, Knopman DS, Chertkow H et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 263-269
  • 40 Merola A, Murphy K, Stone AJ et al. Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hypercapnic and hyperoxic calibration. NeuroImage 2016; 129: 159-174
  • 41 Meyer PM, Tiepolt S, Barthel H et al. Radioligand imaging of α4β2* nicotinic acetylcholine receptors in Alzheimer’s disease and Parkinson’s disease. Q J Nucl Med Mol Imaging Off Publ Ital Assoc Nucl Med AIMN Int Assoc Radiopharmacol IAR Sect Soc Radiopharm. Chem Biol 2014; 58: 376-386
  • 42 Moodley KK, Perani D, Minati L et al. Simultaneous PET-MRI studies of the concordance of atrophy and hypometabolism in syndromic variants of alzheimer’s disease and frontotemporal dementia: an extended case series. J Alzheimers Dis JAD 2015; 46: 639-653
  • 43 Mosconi L, Tsui WH, Herholz K et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med Off Publ Soc Nucl Med 2008; 49: 390-398
  • 44 Pöpperl G, Kreth FW, Mehrkens JH et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007; 34: 1933-1942
  • 45 Preuss M, Werner P, Barthel H et al. Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 2014
  • 46 Riedl V, Bienkowska K, Strobel C et al. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study. J Neurosci Off J Soc Neurosci 2014; 34: 6260-6266
  • 47 Rossi Espagnet MC, Romano A, Mancuso V et al. Multiparametric evaluation of low grade gliomas at follow-up: comparison between diffusion and perfusion MR with 18F-FDOPA PET. Br J Radiol 2016; 20160476
  • 48 Sabri O, Becker G-A, Meyer PM et al. First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (-)-[(18)F]Flubatine. NeuroImage 2015; 118: 199-208
  • 49 Sabri O, Kendziorra K, Wolf H et al. Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 2008; 35: 30-45
  • 50 Sabri O, Sabbagh MN, Seibyl J et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement J Alzheimers Assoc 2015; 11: 964-974
  • 51 Sakoh M, Røhl L, Gyldensted C et al. Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs comparison with [15O] H2O positron emission tomography. Stroke 2000; 31: 1958-1964
  • 52 Sander CY, Hooker JM, Catana C et al. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proc Natl Acad Sci U S A 2013; 110: 11169-11174
  • 53 Saver JL, Goyal M, Bonafe A et al. Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. N Engl J Med 2015; 372: 2285-2295
  • 54 Schütz L, Lobsien D, Fritzsch D et al. Feasibility and acceptance of simultaneous amyloid PET/MRI. Eur J Nucl Med Mol Imaging 2016
  • 55 Sekine T, Buck A, Delso G et al. Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: application of a head atlas and comparison to true CT-based attenuation correction. J Nucl Med 2016; 57: 215-220
  • 56 Sekine T, ter Voert EE, Warnock G et al. Clinical evaluation of ZTE attenuation correction for brain FDG-PET/MR imaging–comparison with atlas attenuation correction. J Nucl Med 2016
  • 57 Shin HW, Jewells V, Sheikh A et al. Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure 2015; 31: 1-4
  • 58 Siemers ER, Sundell KL, Carlson C et al. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement J Alzheimers Assoc 2016; 12: 110-120
  • 59 Su Y, Rubin B, McConathy J et al. Impact of MR based attenuation correction on neurological PET studies. J Nucl Med Off Publ Soc Nucl Med. 2016
  • 60 Takasawa M, Jones PS, Guadagno JV et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 2008; 39: 870-877
  • 61 Tiepolt S, Hesse S, Patt M et al. Early [(18)F]florbetaben and [(11)C]PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2016; 43: 1700-1709
  • 62 Villien M, Wey H-Y, Mandeville JB et al. Dynamic functional imaging of brain glucose utilization using fPET-FDG. NeuroImage 2014; 100: 192-199
  • 63 Warach S, Al-Rawi Y, Furlan AJ et al. Refinement of the magnetic resonance diffusion-perfusion mismatch concept for thrombolytic patient selection: insights from the desmoteplase in acute stroke trials. Stroke 2012; 43: 2313-2318
  • 64 Wehrl HF, Hossain M, Lankes K et al. Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 2013; 19: 1184-1189
  • 65 Werner P, Barthel H, Drzezga A et al. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging 2015; 42: 512-526
  • 66 Werner P, Barthel H, Drzezga A et al. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging 2015; 42: 512-526
  • 67 Werner P, Rullmann M, Bresch A et al. Impact of attenuation correction on clinical [18F]FDG brain PET in combined PET/MRI. EJNMMI Res 2016; 6
  • 68 Wooten D, Mandeville J, Verwer E et al. Inhibitory and excitatory responses of the serotonin system: a simultaneous PET/fMRI study. J Nucl Med 2016; 57: 351-351
  • 69 Yang ZL, Zhang LJ. PET/MRI of central nervous system: current status and future perspective. Eur Radiol 2016
  • 70 Zaro-Weber O, Moeller-Hartmann W, Heiss W-D et al. Maps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography. Stroke J Cereb Circ 2010; 41: 2817-2821
  • 71 Zhang K, Herzog H, Mauler J et al. Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. J Cereb Blood Flow Metab 2014; 34: 1373-1380