Synthesis 2024; 56(16): 2549-2557
DOI: 10.1055/s-0043-1775368
paper

Synthesis of Methoxy Analogues of Coenzyme Q10 Metabolites from Parsley Seed Extracts via Baeyer–Villiger Rearrangement of Carbonyl-Substituted Polyalkoxybenzenes

Dmitry V. Demchuk
,
Olga I. Adaeva
,
Dmitry V. Tsyganov
,
Darina I. Nasyrova
,
Roman A. Dolotov
,
Еgor А. Muravsky
,
Alexander E. Varakutin
,
Alexander V. Samet
,
Victor V. Semenov
Russian Science Foundation Grant 24-23-00024.


Abstract

Based on the parsley seed main component, apiol, efficient approach to polymethoxyquinone C3- and C4-acids was developed. The key step of this approach is Baeyer–Villiger rearrangement of carbonyl-substituted polyalkoxybenzenes derived from parsley seed extracts. These acids are the MeO-analogues of natural antioxidants – metabolites of ubiquinone and idebenone. Due to antioxidant properties, they are the potential therapeutic candidates for the treatment of mitochondrial dysfunction.

Supporting Information



Publication History

Received: 20 February 2024

Accepted after revision: 16 May 2024

Article published online:
18 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Thomson RH. Naturally Occurring Quinones IV. Recent Advances, 4th ed. Blackie Academic & Professional; London: 1997: 746
    • 1b Pennock JF. The Chemistry of Isoprenoid Quinones . In Terpenoids in Plants . Pridham JB. Academic Press; London: 1967: 129
    • 2a Ochi M, Kotsuki H, Inoue S, Taniguchi M, Tokoroyama T. Chem. Lett. 1979; 8: 831
    • 2b Capon RJ, Ghisalberti EL, Jefferies PR. Phytochemistry 1981; 20: 2598
  • 3 Fedorov S, Bode AM, Dong Z, Radchenko O, Shubina L, Stonik V. Patent WO 2006/034392 A2, 2004
    • 4a Yang H.-L, Thiyagarajan V, Shen P.-C, Mathew DC, Lin K.-Y, Liao J.-W, Hseu Y.-C. J. Exp. Clin. Cancer Res. 2019; 38: 186
    • 4b Hseu YC, Thiyagarajan V, Tsou HT, Lin KY, Chen HJ, Lin CM, Liao JW, Yang HL. Oncotarget 2016; 7: 22409
  • 5 Hseu Y.-C, Tsai T.-J, Korivi M, Liu J.-Y, Chen H.-J, Lin C.-M, Shen Y.-C, Yang H.-L. Sci. Rep. 2017; 7: 8062
  • 6 Wellington KW. RSC Adv. 2015; 5: 20309
    • 7a Duveau DY, Arce PM, Schoenfeld RA, Raghav N, Cortopassi GA, Hecht SM. Bioorg. Med. Chem. 2010; 18: 6429
    • 7b Ji Y, Xu W, Jin W, Weimin Y. Synth. Commun. 2006; 36: 1961
    • 8a Dallacker F. Monatsh. Chem. 1969; 100: 742
    • 8b Tsyganov V, Chernysheva NB, Salamandra LK, Konyushkin LD, Atamanenko OP, Semenova MN, Semenov VV. Mendeleev Commun. 2013; 23: 147
  • 9 Tsyganov DV, Demchuk DV, Adaeva OI, Konyushkin LD, Minyaev ME, Khrustalev VN, Semenov VV. Mendeleev Commun. 2023; 33: 539
  • 10 Semenov VV, Rusak VV, Chartov EM, Zaretskii MI, Konyushkin LD, Firgang SI, Chizhov AO, Elkin VV, Latin NN, Bonashek VM, Stas’eva ON. Russ. Chem. Bull. 2007; 56: 2448
    • 11a Semenov VV, Kiselyov AS, Titov IY, Sagamanova IK, Ikizalp NN, Chernysheva NB, Tsyganov DV, Konyushkin LD, Firgang SI, Semenov RV, Karmanova IB, Raihstat MM, Semenova MN. J. Nat. Prod. 2010; 73: 1796
    • 11b Samet AV, Shevchenko OG, Rusak VV, Chartov EM, Myshlyavtsev AB, Rusanov DA, Semenova MN, Semenov VV. J. Nat. Prod. 2019; 82: 1451
  • 12 Feng Z, Nadikudi M, Woolley KL, Hemasa AL, Chear S, Smith JA, Gueven N. Molecules 2021; 26: 1382
  • 13 Okamoto K, Watanabe M, Kawada M, Goto G, Ashida Y, Oda K, Yajima A, Imada I, Morimoto H. Chem. Pharm. Bull. 1982; 30: 2797
  • 14 Varakutin AE, Shinkarev IY, Muravsky EA, Nasyrova DI, Samigullina AI, Semenova MN, Semenov VV. Tetrahedron 2023; 137: 133365
  • 15 Varakutin AE, Muravsky EA, Tsyganov DV, Shinkarev IY, Samigullina AI, Kuptsova TS, Chuprov-Netochin RN, Smirnova AV, Khomutov AA, Leonov SV, Semenova MN, Semenov VV. Russ. Chem. Bull. 2023; 72: 1632
  • 16 Tsyganov DV, Samigullina AI, Semenov VV. Mendeleev Commun. 2024; 34: in press
  • 17 Matsumoto M, Kobayashi K, Hotta Y. J. Org. Chem. 1984; 49: 4740
  • 18 Dallacker F, Maier R.-D, Morcinek R, Rabie A, van Loo R. Chem. Ber. 1980; 113: 1320
  • 19 Ma G, Xu Z, Zhang P, Liu J, Hao X, Ouyang J, Liang P, You S, Jia X. Org. Process Res. Dev. 2014; 18: 1169
  • 20 Reyes RE, González AG. Phytochemistry 1970; 9: 833
  • 21 Adaeva OI, Demchuk DV, Semenov VV. Molbank 2023; M1702
  • 22 Maes D, Vervisch S, Debenedetti S, Davio C, Mangelinckx S, Giubellina N, De Kimpe N. Tetrahedron 2005; 61: 2505
  • 23 Dallacker F, Schmets G. Chem. Ber. 1971; 104: 2534
  • 24 CrysAlisPro 1.171.43 . Rigaku Oxford Diffraction; Oxford: 2023
  • 25 Sheldrick GM. Acta Crystallogr. Ser. A 2015; 71: 3
  • 26 Sheldrick GM. Acta Crystallogr. Ser. C 2015; 71: 3
  • 27 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339
  • 28 Sheldrick GM. Acta Crystsllogr. Ser. A 2008; 64: 112
  • 29 CCDC 2300650, 2302987, 2305064 (compounds 8, 19, 22, respectively) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.