Synthesis
DOI: 10.1055/s-0043-1775387
short review
Special Topic Dedicated to Prof. Erick Carreira

Advances in Photoinduced Minisci-like Reactions

Mario Martos
,
Irene Bosque
,
This work was financially supported by Generalitat Valenciana (SEJIGENT/2021/005 and CIAICO/2022/017). M.M. acknowledges a postdoctoral fellowship from Next Generation Funds (CNS2022-135161).


On the 60th birthday of Prof. Erick M. Carreira

Abstract

The Minisci reaction, which has been around for more than five decades, is still the preferred tool for the straightforward alkylation of basic heteroarenes. The recent developments in photocatalysis have opened novel pathways for radical generation under milder and more sustainable conditions. Implementing this approach into the Minisci reaction has renewed interest in this transformation, which is attractive per se in Medicinal Chemistry. Aspects such as sacrificial oxidants, catalysts, and specific reaction conditions should be carefully examined to evaluate the practicability of the protocol. This short review focuses on recent advances (2020 to February 2024) in photoinduced Minisci-type reactions, emphasizing sustainability.

1 Introduction

2 Using Noble-Metal-Based Photocatalysts

3 Noble-Metal-Free Methods Using Sacrificial Oxidants

4 Noble-Metal-Free Methods Without Sacrificial Oxidants

5 Conclusions and Perspectives



Publication History

Received: 28 March 2024

Accepted after revision: 03 July 2024

Article published online:
29 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
    • 1b Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discovery 2018; 17: 709
    • 1c Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
  • 2 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 3 Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
  • 4 Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
    • 5a Minisci F, Galli R, Cecere M, Malatesta V, Caronna T. Tetrahedron Lett. 1968; 9: 5609
    • 5b Minisci F, Galli R, Malatesta V, Caronna T. Tetrahedron 1970; 26: 4083
    • 5c Minisci F, Citterio A, Vismara E, Giordano C. Tetrahedron 1985; 41: 4157
    • 6a Minisci F. Synthesis 1973; 1
    • 6b Minisci F, Vismara E, Fontana F. Heterocycles 1989; 28: 489
    • 6c Minisci F, Fontana F, Vismara E. J. Heterocycl. Chem. 1990; 27: 79
    • 6d Punta C, Minisci F. Trends Heterocycl. Chem. 2008; 13: 1
  • 7 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
  • 8 Tauber J, Imbri D, Opatz T. Molecules 2014; 19: 16190
  • 9 Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
    • 10a Cao H, Tang X, Tang H, Yuan Y, Wu J. Chem Catal. 2021; 1: 523
    • 10b Thakur A, Manisha, Kumar I, Sharma U. Asian J. Org. Chem. 2022; 11: e202100804
    • 10c Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
    • 10d Matsumoto A, Maruoka K. Asian J. Org. Chem. 2024; 13: e202300580
  • 12 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 13 Monos TM, Stephenson CR. J. In Iridium(III) in Optoelectronic and Photonics Applications . Zysman-Colman E. John Wiley & Sons; Chichester: 2017: 541
  • 14 Wang Q, Duan J, Tang P, Chen G, He G. Sci. China Chem. 2020; 63: 1613
  • 15 Dong J, Yue F, Liu J, Song H, Liu Y, Wang Q. Green Chem. 2021; 23: 7963
  • 16 Yue F, Ma H, Ding P, Song H, Liu Y, Wang Q. ACS Cent. Sci. 2023; 9: 2268
  • 17 Li T, Liang K, Zhang Y, Hu D, Ma Z, Xia C. Org. Lett. 2020; 22: 2386
  • 18 Lazarou YG, Prosmitis AV, Papadimitriou VC, Papagiannakopoulos P. J. Phys. Chem. A 2001; 105: 6729
  • 19 Wang Q.-L, Huang H, Sun Z, Chen Y, Deng G.-J. Green Chem. 2021; 23: 7790
  • 20 Bhakat M, Khatua B, Guin J. Org. Lett. 2022; 24: 5276
    • 21a Lima F, Kabeshov MA, Tran DN, Battilocchio C, Sedelmeier J, Sedelmeier G, Schenkel B, Ley SV. Angew. Chem. Int. Ed. 2016; 55: 14085
    • 21b Lima F, Sharma UK, Grunenberg L, Saha D, Johannsen S, Sedelmeier J, Van der Eycken EV, Ley SV. Angew. Chem. Int. Ed. 2017; 56: 15136
  • 22 Dong J, Yue F, Song H, Liu Y, Wang Q. Chem. Commun. 2020; 56: 12652
  • 23 Dong J, Yue F, Xu W, Song H, Liu Y, Wang Q. Green Chem. 2020; 22: 5599
  • 24 Okada K, Okamoto K, Oda M. J. Am. Chem. Soc. 1988; 110: 8736
    • 25a Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
    • 25b Reid JP, Proctor RS. J, Sigman MS, Phipps RJ. J. Am. Chem. Soc. 2019; 141: 19178
    • 25c Ermanis K, Colgan AC, Proctor RS. J, Hadrys BW, Phipps RJ, Goodman JM. J. Am. Chem. Soc. 2020; 142: 21091
  • 26 Luo M.-P, Gu Y.-J, Wang S.-G. Chem. Sci. 2023; 14: 251
  • 27 Santos MS, Cybularczyk-Cecotka M, König B, Giedyk M. Chem. Eur. J. 2020; 26: 15323
  • 28 Jian Y, Chen M, Yang C, Xia W. Eur. J. Org. Chem. 2020; 2020: 1439
  • 29 Wang X, Studer A. Acc. Chem. Res. 2017; 50: 1712
  • 30 Ramkumar N, Plantus K, Ozola M, Mishnev A, Nikolajeva V, Senkovs M, Ošeka M, Veliks J. New J. Chem. 2023; 47: 20642
  • 31 Ruscic B. J. Phys. Chem. A 2015; 119: 7810
  • 32 Rammal F, Gao D, Boujnah S, Gaumont A, Hussein AA, Lakhdar S. Org. Lett. 2020; 22: 7671
  • 33 Sonavane SR, Mhaske SB. Chem. Asian J. 2023; 18: e202300235
  • 34 Zhang F.-L, Li B, Houk KN, Wang Y.-F. JACS Au 2022; 2: 1032
  • 35 Wang Z, Liu Q, Ji X, Deng G.-J, Huang H. ACS Catal. 2020; 10: 154
  • 36 Wang C, Shi H, Deng G.-J, Huang H. Org. Biomol. Chem. 2021; 19: 9177
  • 37 Zidan M, Morris AO, McCallum T, Barriault L. Eur. J. Org. Chem. 2020; 2020: 1453
  • 38 Dai J.-J, Xu W.-T, Wu Y.-D, Zhang W.-M, Gong Y, He X.-P, Zhang X.-Q, Xu H.-J. J. Org. Chem. 2015; 80: 911
  • 39 Ramirez NP, Bosque I, Gonzalez-Gomez JC. Org. Lett. 2015; 17: 4550
  • 40 Ventre S, Petronijevic FR, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 5654
  • 41 Guo R, Zuo M, Tian Q, Hou C, Sun S, Guo W, Wu H, Chu W, Sun Z. Chem. Asian J. 2020; 15: 1976
  • 42 Taylor D, Malcomson T, Zhakeyev A, Cheng S, Rosair GM, Marques-Hueso J, Xu Z, Paterson MJ, Dalgarno SJ, Vilela F. Org. Chem. Front. 2022; 9: 5473
  • 43 Xu N.-X, Li B.-X, Wang C, Uchiyama M. Angew. Chem. Int. Ed. 2020; 59: 10639
  • 44 Zhang G, Tian Y, Zhang C, Li X, Chen F. Chem. Commun. 2023; 59: 2449
  • 45 Kim JH, Constantin T, Simonetti M, Llaveria J, Sheikh NS, Leonori D. Nature 2021; 595: 677
  • 46 Perkins JJ, Schubert JW, Streckfuss EC, Balsells J, ElMarrouni A. Eur. J. Org. Chem. 2020; 2020: 1515
  • 47 Zhang P, Le C, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
  • 48 Tian H, Yang H, Tian C, An G, Li G. Org. Lett. 2020; 22: 7709
    • 49a Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 49b Fattahi A, Kass SR. J. Org. Chem. 2004; 69: 9176
    • 50a Weigel WK, Dang HT, Yang H.-B, Martin DB. C. Chem. Commun. 2020; 56: 9699
    • 50b Li Y, Lei M, Gong L. Nat. Catal. 2019; 2: 1016
  • 51 Recort-Fornals M, Marset X, Simon M, Golz C, Ramón DJ, Alcarazo M. Adv. Synth. Catal. 2024; 366: 877
  • 52 Wang C, Song S, Chen Z, Shen D, Wang Z, Zhou J, Guo J, Li J. J. Org. Chem. 2022; 87: 16794
  • 53 Hafeez S, Saeed A. RSC Adv. 2021; 11: 38683
  • 54 Hirakawa T, Yawata K, Nosaka Y. Appl. Catal., A 2007; 325: 105
  • 55 Yamamoto A, Ohara T, Yoshida H. Catal. Sci. Technol. 2018; 8: 2046
  • 56 Naniwa S, Yamamoto A, Yoshida H. Catal. Sci. Technol. 2021; 11: 3376
  • 57 Lopat’eva ER, Krylov IB, Segida OO, Merkulova VM, Ilovaisky AI, Terent’ev AO. Molecules 2023; 28: 934
  • 58 Cai Z, An G, Li G. J. Organomet. Chem. 2023; 996: 122757
  • 59 Kemmochi M, Miyamoto Y, Sumida Y, Ohmiya H. Asian J. Org. Chem. 2022; 11: e202100640
  • 60 Proctor RS. J, Chuentragool P, Colgan AC, Phipps RJ. J. Am. Chem. Soc. 2021; 143: 4928
  • 61 Colgan AC, Proctor RS. J, Gibson DC, Chuentragool P, Lahdenperä AS. K, Ermanis K, Phipps RJ. Angew. Chem. Int. Ed. 2022; 61: e202200266
  • 62 Shao X, Wu X, Wu S, Zhu C. Org. Lett. 2020; 22: 7450
  • 63 Yin C, Hu P. Eur. J. Org. Chem. 2023; 26: e202300015
  • 64 McClain EJ, Monos TM, Mori M, Beatty JW, Stephenson CR. J. ACS Catal. 2020; 10: 12636
  • 65 McClain EJ, Wortman AK, Stephenson CR. J. Chem. Sci. 2022; 13: 12158
  • 66 Xu J, Cai H, Shen J, Shen C, Wu J, Zhang P, Liu X. J. Org. Chem. 2021; 86: 17816
  • 67 Hou C, Sun S, Liu Z, Zhang H, Liu Y, An Q, Zhao J, Ma J, Sun Z, Chu W. Adv. Synth. Catal. 2021; 363: 2806
  • 68 Hou H, Wang C, Cheng X, Chen H, Sun W, Zheng Z, Ke F. Catal. Sci. Technol. 2023; 13: 305
  • 69 Zheng Z, Wu Y, Lu X, Zhang F.-L, Qi M.-F, Sun E, Sun B. Tetrahedron 2022; 112: 132749
  • 70 Wang M, Zhang Y, Yang X, Sun P. Org. Biomol. Chem. 2022; 20: 2467
  • 71 Zhang Q.-L, Yu Q, Ma L, Lu X, Fan Q.-T, Duan T.-S, Zhou Y, Zhang F.-L. J. Org. Chem. 2021; 86: 17244
  • 72 Zhang L, Pfund B, Wenger OS, Hu X. Angew. Chem. Int. Ed. 2022; 61: e202202649
  • 73 Niu K, Jiao H, Zhou P, Wang Q. Org. Lett. 2023; 25: 8970
  • 74 Cao X, Wei L, Yang J, Song H, Wei Y. Org. Biomol. Chem. 2024; 22: 1157
  • 75 Zeng C.-L, Wang H, Gao D, Zhang Z, Ji D, He W, Liu C.-K, Yang Z, Fang Z, Guo K. Org. Lett. 2022; 24: 3244
  • 76 Graham MA, Noonan G, Cherryman JH, Douglas JJ, Gonzalez M, Jackson LV, Leslie K, Liu Z, McKinney D, Munday RH, Parsons CD, Whittaker DT. E, Zhang E, Zhang J. Org. Process Res. Dev. 2021; 25: 57
  • 77 Revie RI, Whitaker BJ, Paul B, Smith RC, Anderson EA. Org. Lett. 2024; 26: 2843
  • 78 Sharique M, Majhi J, Dhungana RK, Kammer LM, Krumb M, Lipp A, Romero E, Molander GA. Chem. Sci. 2022; 13: 5701
  • 79 Shi C, Guo L, Gao H, Luo M, Zhou X, Yang C, Xia W. Org. Lett. 2023; 25: 7661
  • 80 Guerrero IT, Tan EY. K, Liu Y, Edwards LJ, Chiba S. Synthesis 2023; in press DOI: 10.1055/a-2182-7416.
  • 81 Li J, Tan SS, Kyne SH, Chan PW. H. Adv. Synth. Catal. 2022; 364: 802
  • 82 Ji X, Liu Q, Wang Z, Wang P, Deng G.-J, Huang H. Green Chem. 2020; 22: 8233
  • 83 Sun Y, Wu X, Cao Z, Zhu C. Sci. China Chem. 2023; 66: 1435
    • 84a Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. Acc. Chem. Res. 2009; 42: 1995
    • 84b Kojima M, Matsunaga S. Trends Chem. 2020; 2: 410
    • 84c Cartwright KC, Davies AM, Tunge JA. Eur. J. Org. Chem. 2020; 2020: 1245
  • 85 Li J, Huang C.-Y, Han J.-T, Li C.-J. ACS Catal. 2021; 11: 14148
    • 86a Pillitteri S, Ranjan P, Ojeda-Carralero GM, Vázquez Amaya LY, Alfonso-Ramos JE, Van der Eycken EV, Sharma UK. Org. Chem. Front. 2022; 9: 6958
    • 86b Oliva M, Chernobrovkina VV, Van der Eycken EV, Sharma UK. Synlett 2023; 34: 1662
  • 87 Huang C.-Y, Li J, Li C.-J. Nat. Commun. 2021; 12: 4010
  • 88 Li D.-S, Liu T, Hong Y, Cao C.-L, Wu J, Deng H.-P. ACS Catal. 2022; 12: 4473
  • 89 Laze L, Quevedo-Flores B, Bosque I, Gonzalez-Gomez JC. Org. Lett. 2023; 25: 8541
    • 90a Huang H, Steiniger KA, Lambert TH. J. Am. Chem. Soc. 2022; 144: 12567
    • 90b Wu S, Kaur J, Karl TA, Tian X, Barham JP. Angew. Chem. Int. Ed. 2022; 61: e202107811
  • 91 Huang H, Strater ZM, Lambert TH. J. Am. Chem. Soc. 2020; 142: 1698
  • 92 Xu P, Chen P.-Y, Xu H.-C. Angew. Chem. Int. Ed. 2020; 59: 14275
  • 93 Zhao X.-R, Zhang Y.-C, Hou Z.-W, Wang L. Chin. J. Chem. 2023; 41: 2963
  • 94 Capaldo L, Quadri LL, Merli D, Ravelli D. Chem. Commun. 2021; 57: 4424
  • 95 Le Saux E, Georgiou E, Dmitriev IA, Hartley WC, Melchiorre P. J. Am. Chem. Soc. 2023; 145: 47
    • 96a Li H, Tong J, Zhu Y, Jiang C, Liu P, Sun P. Green Chem. 2022; 24: 8406
    • 96b Liao Y, Jiang C, Qiang C, Liu P, Sun P. Org. Lett. 2023; 25: 7327
    • 96c Qiang C, Zhang T, Feng Z, Liu P, Sun P. Org. Lett. 2024; 26: 493
    • 96d del Río-Rodríguez R, Fragoso-Jarillo L, Garrido-Castro AF, Maestro MC, Fernández-Salas JA, Alemán J. Chem. Sci. 2022; 13: 6512
    • 96e Wu S, Huang J, Kang L, Zhang Y, Yuan K. Org. Lett. 2024; 26: 763