J Knee Surg 2024; 37(06): 444-451
DOI: 10.1055/s-0043-1775983
Original Article

Femoral Fixation Strength as a Function of Bone Plug Length in Anterior Cruciate Ligament Reconstruction Utilizing Interference Screws

1   Eastern Virginia Medical School, School of Medicine, Norfolk, Virginia
,
Amanda B. Firoved
2   Jordan Young Institute, Orthopaedic Surgery, Sports Medicine, Virginia Beach, Virginia
,
Vanna J. Rocchi
1   Eastern Virginia Medical School, School of Medicine, Norfolk, Virginia
3   Naval Medicine Center Portsmouth, Orthopaedics, Portsmouth, Virginia
,
Laurie L. Wellman
1   Eastern Virginia Medical School, School of Medicine, Norfolk, Virginia
,
1   Eastern Virginia Medical School, School of Medicine, Norfolk, Virginia
2   Jordan Young Institute, Orthopaedic Surgery, Sports Medicine, Virginia Beach, Virginia
› Author Affiliations
Funding None.

Abstract

Purpose To determine femoral construct fixation strength as bone plug length decreases in anterior cruciate ligament reconstruction (ACLR).

Methods Sixty fresh-frozen bone–patellar tendon–bone allografts were utilized and divided into 20-, 15-, and 10-mm length bone plug groups, subdivided further so that half utilized the patella side (P) for testing and half used the tibial side (T). Ten mm diameter recipient tunnels were created within the anatomic anterior cruciate ligament footprint of 60 cadaveric femurs. All bone plugs were 10 mm in diameter; grafts were fixed using a 7 × 23 mm metal interference screw. An Instron was used to determine the load to failure of each group. A one-way multivariate analysis of variance (MANOVA) was conducted to test the hypothesis that there would be one or more mean differences in fixation stability between 20- or 15-mm plug lengths (P or T) versus 10 mm T plug lengths when cross-compared, with no association between other P or T subgroups.

Results The mean load to failure of the 20 mm plugs (20 P + T) was 457 ± 66N, 15 mm plugs (15 P + T) was 437 ± 74N, and 10 mm plugs (10 P + T) was 407 ± 107N. There was no significant difference between P + T groups: 20-versus 15-mm (p = 1.000), 15-versus 10-mm (p = 0.798), and 20-versus 10-mm (p = 0.200); P + T MANOVA (p = 0.291). Within groups, there was no significant difference between patella and tibial bone plug subgroups with a pullout force range between 469 ± 56N and 374 ± 116N and p-value ranging from p = 1.000 for longer bone plugs to p = 0.194 for shorter bone plugs; P versus T MANOVA (p = 0.113).

Conclusion In this human time zero cadaver model, there was no significant difference in construct failure between 20-,15-, and 10-mm bone plugs when fixed with an interference screw within the femoral tunnel, although fixation strength did trend down when from 20- to 15- to 10-mm bone plugs.

Clinical Relevance There is a balance between optimal bone plug length on the femoral side for achieving adequate fixation as well as minimizing donor site morbidity and facilitating graft passage in ACLR. This study reveals utilizing shorter plugs with interference screw fixation is potentially acceptable on the femoral side if shorter plugs are harvested.

Ethical Approval

Institutional Review Board approval at Eastern Virginia Medical School was obtained for this study (21-04-NH-0119-EVMS).




Publication History

Received: 06 March 2023

Accepted: 11 September 2023

Article published online:
17 October 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Musahl V, Engler ID, Nazzal EM. et al. Current trends in the anterior cruciate ligament part II: evaluation, surgical technique, prevention, and rehabilitation. Knee Surg Sports Traumatol Arthrosc 2022; 30 (01) 34-51
  • 2 Sanders TL, Maradit Kremers H, Bryan AJ. et al. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 2016; 44 (06) 1502-1507
  • 3 Ding DY, Tucker LY, Rugg CM. Comparison of anterior cruciate ligament tears treated nonoperatively versus with reconstruction: risk of subsequent surgery. Am J Sports Med 2022; 50 (03) 652-661
  • 4 Larwa J, Stoy C, Chafetz RS, Boniello M, Franklin C. Stiff landings, core stability, and dynamic knee valgus: a systematic review on documented anterior cruciate ligament ruptures in male and female athletes. Int J Environ Res Public Health 2021; 18 (07) 3826
  • 5 Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ. Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res 2017; 475 (10) 2459-2468
  • 6 Outcome of bone-patellar tendon-bone vs hamstring tendon autograft for anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials with a 5-year minimum follow-up: Erratum. Medicine (Baltimore) 2022; 101 (34) e29873
  • 7 Kunze KN, Moran J, Polce EM, Pareek A, Strickland SM, Williams III RJ. Lower donor site morbidity with hamstring and quadriceps tendon autograft compared with bone-patellar tendon-bone autograft after anterior cruciate ligament reconstruction: a systematic review and network meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc 2023; 31 (08) 3339-3352
  • 8 Runer A, Wierer G, Herbst E. et al. There is no difference between quadriceps- and hamstring tendon autografts in primary anterior cruciate ligament reconstruction: a 2-year patient-reported outcome study. Knee Surg Sports Traumatol Arthrosc 2018; 26 (02) 605-614
  • 9 Davarinos N, O'Neill BJ, Curtin W. A brief history of anterior cruciate ligament reconstruction. Adv Orthop Surg 2014; 2014: 706042
  • 10 Su CA, Knapik DM, Trivedi NN, Megerian MF, Salata MJ, Voos JE. Femoral interference screw fixation in ACL reconstruction using bone-patellar tendon-bone grafts. JBJS Rev 2020; 8 (01) e0066
  • 11 Eriksson K, Anderberg P, Hamberg P, Olerud P, Wredmark T. There are differences in early morbidity after ACL reconstruction when comparing patellar tendon and semitendinosus tendon graft. A prospective randomized study of 107 patients. Scand J Med Sci Sports 2001; 11 (03) 170-177
  • 12 Meena A, Farinelli L, Hoser C. et al. Revision ACL reconstruction using quadriceps, hamstring and patellar tendon autografts leads to similar functional outcomes but hamstring graft has a higher tendency of graft failure. Knee Surg Sports Traumatol Arthrosc 2023; 31 (06) 2461-2468
  • 13 Thaunat M, Fayard JM, Sonnery-Cottet B. Hamstring tendons or bone-patellar tendon-bone graft for anterior cruciate ligament reconstruction?. Orthop Traumatol Surg Res 2019; 105 (1S): S89-S94
  • 14 Frank RM, Higgins J, Bernardoni E. et al. Anterior cruciate ligament reconstruction basics: bone-patellar tendon-bone autograft harvest. Arthrosc Tech 2017; 6 (04) e1189-e1194
  • 15 Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q. A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 2015; 22 (02) 100-110
  • 16 West RV, Harner CD. Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 2005; 13 (03) 197-207
  • 17 Tsuda E, Okamura Y, Ishibashi Y, Otsuka H, Toh S. Techniques for reducing anterior knee symptoms after anterior cruciate ligament reconstruction using a bone-patellar tendon-bone autograft. Am J Sports Med 2001; 29 (04) 450-456
  • 18 Schorfhaar AJ, Flik KR, Bach Jr BR. Anterior cruciate ligament reconstruction utilizing bone-patellar tendon-bone autograft: pearls and pitfalls of graft harvest. Tech Orthop 2005; 20 (04) 377-381
  • 19 Hospodar SJ, Miller MD. Controversies in ACL reconstruction: bone-patellar tendon-bone anterior cruciate ligament reconstruction remains the gold standard. Sports Med Arthrosc Rev 2009; 17 (04) 242-246
  • 20 Dwyer T, Hoit G, Sellan M. et al. Six percent incidence of graft-tunnel mismatch in anatomic anterior cruciate ligament reconstruction using bone-patella tendon-bone autograft and anteromedial portal drilling. Arthrosc Sports Med Rehabil 2021; 4 (02) e479-e486
  • 21 Levy Y, Gousopoulos L, Hopper GP. et al. Anterior cruciate ligament reconstruction using bone-patella tendon-bone autograft with press-fit femoral fixation: the original Chambat technique. Arthrosc Tech 2022; 11 (11) e1889-e1895
  • 22 Pomeroy G, Baltz M, Pierz K, Nowak M, Post W, Fulkerson JP. The effects of bone plug length and screw diameter on the holding strength of bone-tendon-bone grafts. Arthroscopy 1998; 14 (02) 148-152
  • 23 Posner M, Owens B, Johnson P. et al. Comparison of pull-out strength for different bone block length in a porcine anterior cruciate ligament model. Orthop J Sports Med 2014; 2 (05) 2325967114532762
  • 24 Benson DM, Hopper GP, Wilson WT, Mackay GM. Anterior cruciate ligament reconstruction using bone–patellar tendon–bone autograft with suture tape augmentation. Arthrosc Tech 2021; 10 (02) e249-e255
  • 25 Baydoun H, Engler ID, Hosseini A. et al. Stacked biocomposite screws in a single-stage revision anterior cruciate ligament reconstruction has acceptable fixation strength in a porcine cadaveric model. Am J Sports Med 2021; 49 (08) 2144-2149
  • 26 Schoderbek Jr RJ, Treme GP, Miller MD. Bone-patella tendon-bone autograft anterior cruciate ligament reconstruction. Clin Sports Med 2007; 26 (04) 525-547
  • 27 Marsh NA, Antosh IJ, O'Conor DK. et al. Tibial interference screw positioning relative to the bone plug in ACL reconstruction: a biomechanical comparison of cortical versus cancellous-sided placement. Orthopedics 2018; 41 (06) 337-342
  • 28 Caborn DN, Urban Jr WP, Johnson DL, Nyland J, Pienkowski D. Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon-bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 1997; 13 (02) 229-232
  • 29 Lee MC, Jo H, Bae T-S, Jang JD, Seong SC. Analysis of initial fixation strength of press-fit fixation technique in anterior cruciate ligament reconstruction. A comparative study with titanium and bioabsorbable interference screw using porcine lower limb. Knee Surg Sports Traumatol Arthrosc 2003; 11 (02) 91-98
  • 30 Rupp S, Hopf T, Hess T, Seil R, Kohn DM. Resulting tensile forces in the human bone-patellar tendon-bone graft: direct force measurement in vitro. Arthroscopy 1999; 15 (02) 179-184
  • 31 Meuffels DE, Niggebrugge MJN, Verhaar JAN. Failure load of patellar tendon grafts at the femoral side: 10- versus 20-mm-bone blocks. Knee Surg Sports Traumatol Arthrosc 2009; 17 (02) 135-139
  • 32 Nurmi JT, Järvinen TL, Kannus P, Sievänen H, Toukosalo J, Järvinen M. Compaction versus extraction drilling for fixation of the hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 2002; 30 (02) 167-173
  • 33 Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998; 139 (02) 663-670
  • 34 Lenz M, Gueorguiev B, Garces JBG. et al. Axial and shear pullout forces of composite, porcine and human metatarsal and cuboid bones. J Orthop Translat 2018; 14: 67-73
  • 35 Nurmi JT, Sievänen H, Kannus P, Järvinen M, Järvinen TL. Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 2004; 32 (03) 765-771
  • 36 Aune AK, Ekeland A, Cawley PW. Interference screw fixation of hamstring vs patellar tendon grafts for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 1998; 6 (02) 99-102
  • 37 Jomha NM, Raso VJ, Leung P. Effect of varying angles on the pullout strength of interference screw fixation. Arthroscopy 1993; 9 (05) 580-583
  • 38 Zeng C, Lei G, Gao S, Luo W. Methods and devices for graft fixation in anterior cruciate ligament reconstruction. Cochrane Database Syst Rev 2013; (09) CD010730
  • 39 Topp T, Müller T, Huss S. et al. Embalmed and fresh frozen human bones in orthopedic cadaveric studies: which bone is authentic and feasible?. Acta Orthop 2012; 83 (05) 543-547
  • 40 Vaishya R, Agarwal AK, Ingole S, Vijay V. Current trends in anterior cruciate ligament reconstruction: a review. Cureus 2015; 7 (11) e378
  • 41 Sabat D, Arora S. Femoral tunnel-interference screw divergence in anterior cruciate ligament reconstruction using bone-patellar tendon-bone graft: a comparison of two techniques. Indian J Orthop 2011; 45 (06) 583-584
  • 42 Biazzo A, Manzotti A, Motavalli K, Confalonieri N. Femoral press-fit fixation versus interference screw fixation in anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft: 20-year follow-up. J Clin Orthop Trauma 2018; 9 (02) 116-120
  • 43 Slone HS, Romine SE, Premkumar A, Xerogeanes JW. Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy 2015; 31 (03) 541-554
  • 44 Cerulli G, Placella G, Sebastiani E, Tei MM, Speziali A, Manfreda F. ACL reconstruction: choosing the graft. Joints 2013; 1 (01) 18-24
  • 45 Kartus J, Stener S, Lindahl S, Engström B, Eriksson BI, Karlsson J. Factors affecting donor-site morbidity after anterior cruciate ligament reconstruction using bone-patellar tendon-bone autografts. Knee Surg Sports Traumatol Arthrosc 1997; 5 (04) 222-228
  • 46 Sharkey NA, Donahue SW, Smith TS, Bay BK, Marder RA. Patellar strain and patellofemoral contact after bone-patellar tendon-bone harvest for anterior cruciate ligament reconstruction. Arch Phys Med Rehabil 1997; 78 (03) 256-263
  • 47 Benson ER, Barnett PR. A delayed transverse avulsion fracture of the superior pole of the patella after anterior cruciate ligament reconstruction. Arthroscopy 1998; 14 (01) 85-88
  • 48 Tay GH, Warrier SK, Marquis G. Indirect patella fractures following ACL reconstruction: a review. Acta Orthop 2006; 77 (03) 494-500
  • 49 Sarzaeem MM, Najafi F, Razi M, Najafi MA. ACL reconstruction using bone-patella tendon-bone autograft: press-fit technique vs. interference screw fixation. Arch Orthop Trauma Surg 2014; 134 (07) 955-962
  • 50 Schmidt-Wiethoff R, Dargel J, Gerstner M, Schneider T, Koebke J. Bone plug length and loading angle determine the primary stability of patellar tendon-bone grafts in press-fit ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2006; 14 (02) 108-111
  • 51 Kent III RN, Amirtharaj MJ, Berube EE. et al. Anterior cruciate ligament graft forces are sensitive to fixation angle and tunnel position within the native femoral footprint during passive flexion. Knee 2021; 33: 266-274