Semin Musculoskelet Radiol 2024; 28(04): 477-489
DOI: 10.1055/s-0044-1779247
Review Article

The Pediatric Ankle: Normal Variations and Maturation-Dependent Pathology

1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
,
Carolyn M. Sofka
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
› Author Affiliations

Abstract

The pediatric ankle can present a broad range of normal variation and pathology unique to certain stages of development. Understanding the expected age ranges of ossification and fusion about the ankle is essential to provide accurate diagnoses regarding skeletal integrity. This conclusion has been well characterized radiographically and is supported by cadaveric research.

The range of appearances on magnetic resonance imaging has also been well described. Knowledge about the structure of the periosteum and perichondrium aids in image interpretation as well as explaining typical injury patterns. The expected appearance of the physis and regional bone marrow signal is also of utmost importance.

Ultrasonography is a valuable tool in pediatric musculoskeletal imaging but is limited when there is concern for intra-articular pathology. Computed tomography tends to be reserved for preoperative evaluation. We describe normal variation and maturation-dependent pathology of the pediatric ankle with an emphasis on imaging considerations.



Publication History

Article published online:
29 July 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ogden JA, McCarthy SM. Radiology of postnatal skeletal development. VIII. Distal tibia and fibula. Skeletal Radiol 1983; 10 (04) 209-220
  • 2 Love SM, Ganey T, Ogden JA. Postnatal epiphyseal development: the distal tibia and fibula. J Pediatr Orthop 1990; 10 (03) 298-305
  • 3 Kristiansen LP, Gunderson RB, Steen H, Reikerås O. The normal development of tibial torsion. Skeletal Radiol 2001; 30 (09) 519-522
  • 4 Kuhns LR, Finnstrom O. New standards of ossification of the newborn. Radiology 1976; 119 (03) 655-660
  • 5 Kelikian AS, Sarrafian SK. , eds Sarrafian's Anatomy of the Foot and Ankle: Descriptive, Topographic, Functional. 4th ed. Philadelphia, PA:: Wolters Kluwer;; 2023
  • 6 Karasick D, Schweitzer ME. The os trigonum syndrome: imaging features. AJR Am J Roentgenol 1996; 166 (01) 125-129
  • 7 Chung T, Jaramillo D. Normal maturing distal tibia and fibula: changes with age at MR imaging. Radiology 1995; 194 (01) 227-232
  • 8 Blythe CS, Reynolds MS, Gregory LS. Quantifying the ossification and fusion of the calcaneal apophysis using computed tomography. J Anat 2022; 241 (02) 484-499
  • 9 Walter WR, Goldman LH, Rosenberg ZS. Pitfalls in MRI of the developing pediatric ankle. Radiographics 2021; 41 (01) 210-223
  • 10 Shabshin N, Schweitzer ME, Morrison WB, Carrino JA, Keller MS, Grissom LE. High-signal T2 changes of the bone marrow of the foot and ankle in children: red marrow or traumatic changes?. Pediatr Radiol 2006; 36 (07) 670-676
  • 11 Gorelik N, Casagranda BU, Colucci PG. et al. Spotty bone marrow: a frequent MRI finding in the feet of ballet dancers. J Dance Med Sci 2022; 26 (02) 125-133
  • 12 Jawetz ST, Shah PH, Potter HG. Imaging of physeal injury: overuse. Sports Health 2015; 7 (02) 142-153
  • 13 Nguyen JC, Markhardt BK, Merrow AC, Dwek JR. Imaging of pediatric growth plate disturbances. Radiographics 2017; 37 (06) 1791-1812
  • 14 Sofka CM. Posterior ankle impingement: clarification and confirmation of the pathoanatomy. HSS J 2010; 6 (01) 99-101
  • 15 Lawson JP. International Skeletal Society Lecture in honor of Howard D. Dorfman. Clinically significant radiologic anatomic variants of the skeleton. AJR Am J Roentgenol 1994; 163 (02) 249-255
  • 16 Knapik DM, Guraya SS, Jones JA, Cooperman DR, Liu RW. Incidence and fusion of os trigonum in a healthy pediatric population. J Pediatr Orthop 2019; 39 (09) e718-e721
  • 17 Hayashi D, Roemer FW, D'Hooghe P, Guermazi A. Posterior ankle impingement in athletes: pathogenesis, imaging features and differential diagnoses. Eur J Radiol 2015; 84 (11) 2231-2241
  • 18 Baillie P, Cook J, Ferrar K, Smith P, Lam J, Mayes S. Magnetic resonance imaging findings associated with posterior ankle impingement syndrome are prevalent in elite ballet dancers and athletes. Skeletal Radiol 2021; 50 (12) 2423-2431
  • 19 Tsuruta T, Shiokawa Y, Kato A. et al. Radiological study of the accessory skeletal elements in the foot and ankle. [author's translation]. Nippon Seikeigeka Gakkai Zasshi 1981; 55 (04) 357-370
  • 20 LaMont L, Ladenhauf HN, Edobor-Osula F, Bogner E, Do HT, Green DW. Secondary ossification centers in the development of the medial malleolus. J Pediatr Orthop 2015; 35 (03) 314-317
  • 21 Candan B, Torun E, Dikici R. The prevalence of accessory ossicles, sesamoid bones, and biphalangism of the foot and ankle: a radiographic study. Foot Ankle Orthop 2022; 7 (01) 24 730114211068792
  • 22 Lee DY, Lee DJ, Kim DH, Shin HS, Jung WI. Posttraumatic subfibular ossicle formation in children: experience in a single primary care unit. J Pediatr Orthop 2018; 38 (09) e530-e535
  • 23 Saupe N, Mengiardi B, Pfirrmann CW, Vienne P, Seifert B, Zanetti M. Anatomic variants associated with peroneal tendon disorders: MR imaging findings in volunteers with asymptomatic ankles. Radiology 2007; 242 (02) 509-517
  • 24 Davis WH, Sobel M, Deland J, Bohne WHO, Patel MB. The superior peroneal retinaculum: an anatomic study. Foot Ankle Int 1994; 15 (05) 271-275
  • 25 Cheung YY, Rosenberg ZS, Colon E, Jahss M. MR imaging of flexor digitorum accessorius longus. Skeletal Radiol 1999; 28 (03) 130-137
  • 26 Sookur PA, Naraghi AM, Bleakney RR, Jalan R, Chan O, White LM. Accessory muscles: anatomy, symptoms, and radiologic evaluation. Radiographics 2008; 28 (02) 481-499
  • 27 McGoldrick NP, Bergin D, Kearns SR. Peroneus tertius tendon tear causing lateral ankle pain in a child. J Foot Ankle Surg 2017; 56 (04) 854-856
  • 28 Utturkar AA, Ditzler MG, Schallert EK. et al. Pediatric Bassett's ligament: pathology or normal anatomy?. Pediatr Radiol 2021; 51 (07) 1237-1242
  • 29 Salter R, Harris W. Injuries involving the epiphyseal plate. J Bone Joint Surg Am 2001; 83 (11) 1753
  • 30 Ogden JA. Injury to the growth mechanisms of the immature skeleton. Skeletal Radiol 1981; 6 (04) 237-253
  • 31 Chaturvedi A, Mann L, Cain U, Chaturvedi A, Klionsky NB. Acute Fractures and Dislocations of the Ankle and Foot in Children. Radiographics 2020; 40 (03) 754-774
  • 32 Berson L, Davidson RS, Dormans JP, Drummond DS, Gregg JR. Growth disturbances after distal tibial physeal fractures. Foot Ankle Int 2000; 21 (01) 54-58
  • 33 Grace DL. Irreducible fracture-separations of the distal tibial epiphysis. J Bone Joint Surg Br 1983; 65 (02) 160-162
  • 34 Blumetti FC, Gauthier L, Moroz PJ. The ‘trampoline ankle’: severe medial malleolar physeal injuries in children and adolescents secondary to multioccupant use of trampolines. J Pediatr Orthop B 2016; 25 (02) 133-137
  • 35 Cottalorda J, Béranger V, Louahem D. et al. Salter-Harris type III and IV medial malleolar fractures: growth arrest: is it a fate? A retrospective study of 48 cases with open reduction. J Pediatr Orthop 2008; 28 (06) 652-655
  • 36 Peterson HA, Burkhart SS. Compression injury of the epiphyseal growth plate: fact or fiction?. J Pediatr Orthop 1981; 1 (04) 377-384
  • 37 Dias LS, Tachdjian MO. Physeal injuries of the ankle in children: classification. Clin Orthop Relat Res 1978; (136) 230-233
  • 38 Rapariz JM, Ocete G, González-Herranz P. et al. Distal tibial triplane fractures: long-term follow-up. J Pediatr Orthop 1996; 16 (01) 113-118
  • 39 Wiegerinck JI, Yntema C, Brouwer HJ, Struijs PAA. Incidence of calcaneal apophysitis in the general population. Eur J Pediatr 2014; 173 (05) 677-679
  • 40 Nieto-Gil P, Marco-Lledó J, García-Campos J, Ruiz-Muñoz M, Gijon-Nogueron G, Ramos-Petersen L. Risk factors and associated factors for calcaneal apophysitis (Sever's disease): a systematic review. BMJ Open 2023; 13 (06) e064903
  • 41 Fares MY, Salhab HA, Khachfe HH, Fares J, Haidar R, Musharrafieh U. Sever's disease of the pediatric population: clinical, pathologic, and therapeutic considerations. Clin Med Res 2021; 19 (03) 132-137
  • 42 Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am 2004; 86 (06) 1336
  • 43 Chau MM, Klimstra MA, Wise KL. et al. Osteochondritis dissecans. J Bone Joint Surg Am 2021; 103 (12) 1132-1151
  • 44 Cahill BR. Osteochondritis dissecans of the knee: treatment of juvenile and adult forms. J Am Acad Orthop Surg 1995; 3 (04) 237-247
  • 45 Johnson MA, Park K, Talwar D, Maguire KJ, Lawrence JTR. Predicting outcomes of talar osteochondritis dissecans lesions in children. Orthop J Sports Med 2021; 9 (11) 23 259671211051769
  • 46 Kijowski R, Blankenbaker DG, Shinki K, Fine JP, Graf BK, De Smet AA. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology 2008; 248 (02) 571-578
  • 47 Schenck Jr RC, Goodnight JM. Osteochondritis dissecans. J Bone Joint Surg Am 1996; 78 (03) 439-456
  • 48 O'Loughlin PF, Heyworth BE, Kennedy JG. Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med 2010; 38 (02) 392-404
  • 49 You JY, Lee GY, Lee JW, Lee E, Kang HS. An osteochondral lesion of the distal tibia and fibula in patients with an osteochondral lesion of the talus on MRI: prevalence, location, and concomitant ligament and tendon injuries. AJR Am J Roentgenol 2016; 206 (02) 366-372
  • 50 Bui-Mansfield LT, Kline M, Chew FS, Rogers LF, Lenchik L. Osteochondritis dissecans of the tibial plafond: imaging characteristics and a review of the literature. AJR Am J Roentgenol 2000; 175 (05) 1305-1308
  • 51 Allahabadi S, Allahabadi S, Allala R, Garg K, Pandya NK, Lau BC. Osteochondral lesions of the distal tibial plafond: a systematic review of lesion locations and treatment outcomes. Orthop J Sports Med 2021; 9 (04) 23 25967121997120
  • 52 Masquijo JJ, Allende F, Carabajal M. Ankle morphology and juvenile osteochondritis dissecans (JOCD) of the talus: is there an association? An MRI study. J Pediatr Orthop 2021; 41 (02) e147-e152
  • 53 Cheng KY, Fuangfa P, Shirazian H, Resnick D, Smitaman E. Osteochondritis dissecans of the talar dome in patients with tarsal coalition. Skeletal Radiol 2022; 51 (01) 191-200
  • 54 Wartelle J, Hocquet B, Lucchesi G. et al. The too-long anterior process and osteochondral lesion of the talus: Is there an anatomical predisposition? A case-control study on 135 feet. Foot Ankle Surg 2022; 28 (07) 1076-1082
  • 55 Patel M, Francavilla ML, Lawrence JTR. et al. Osteochondral lesion of the talus in children: are there MRI findings of instability?. Skeletal Radiol 2020; 49 (08) 1305-1311
  • 56 Savage-Elliott I, Ross KA, Smyth NA, Murawski CD, Kennedy JG. Osteochondral lesions of the talus: a current concepts review and evidence-based treatment paradigm. Foot Ankle Spec 2014; 7 (05) 414-422
  • 57 Baghdadi S, Nguyen JC, Arkader A. Nonossifying fibroma of the distal tibia: predictors of fracture and management algorithm. J Pediatr Orthop 2021; 41 (08) e671-e679
  • 58 Jee WH, Choe BY, Kang HS. et al. Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology 1998; 209 (01) 197-202
  • 59 Li J, Fang M, Van Oevelen A, Peiffer M, Audenaert E, Burssens A. International Weightbearing CT Society. Diagnostic applications and benefits of weightbearing CT in the foot and ankle: a systematic review of clinical studies. Foot Ankle Surg 2024; 30 (01) 7-20
  • 60 Heitz PH, Miron MC, Beauséjour M. et al. Ultrasound assessment of ankle syndesmotic injuries in a pediatric population. Clin J Sport Med 2023 ; October 24 (Epub ahead of print)