Semin Musculoskelet Radiol 2024; 28(05): 528-538
DOI: 10.1055/s-0044-1788579
Review Article

DXA: New Concepts and Tools Beyond Bone Mineral Density

Irene Carmen Pizza
1   Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono, Milan, Italy
,
Alessia Bongiorno
1   Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono, Milan, Italy
,
Martina Pedullà
1   Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono, Milan, Italy
,
Domenico Albano
2   IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso, Milan, Italy
3   Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
,
Luca Maria Sconfienza
2   IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso, Milan, Italy
4   Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
,
Carmelo Messina
2   IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso, Milan, Italy
4   Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
› Author Affiliations

Abstract

Since its introduction in 1987, dual-energy X-ray absorptiometry (DXA) has revolutionized bone assessment, becoming the gold standard for measuring bone mineral density (BMD). Its low radiation exposure and high accuracy have made it indispensable in diagnosing osteoporosis, aligning with World Health Organization criteria. However, DXA evolution extends beyond BMD measurement, with emerging tools like the Trabecular Bone Score (TBS) and the DXA-based Bone Strain Index (BSI). TBS provides insights into trabecular bone architecture, enhancing the prediction of fracture risk. Despite limitations like body mass index correlation, TBS aids in evaluating patients with conditions such as diabetes and glucocorticoid exposure. BSI, introduced in 2019, evaluates bone strength using finite element analysis, complementing BMD and TBS by assessing bone fatigue.

Advancements in DXA-based tools extend to Hip Structural Analysis and three-dimensional DXA software, offering valuable insights into hip fracture risk. Moreover, DXA serves beyond bone assessment, aiding in abdominal aortic calcification assessment, enhancing cardiovascular risk stratification. In summary, the expanding capabilities of DXA promise comprehensive skeletal and cardiovascular health evaluation, contributing significantly to clinical management and prevention strategies.



Publication History

Article published online:
15 October 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lewiecki EM, Binkley N. DXA: 30 years and counting: introduction to the 30th anniversary issue. Bone 2017; 104: 1-3
  • 2 Bouxsein ML, Eastell R, Lui LY. et al; FNIH Bone Quality Project. Change in bone density and reduction in fracture risk: a meta-regression of published trials. J Bone Miner Res 2019; 34 (04) 632-642
  • 3 Carey JJ, Delaney MF. Utility of DXA for monitoring, technical aspects of DXA BMD measurement and precision testing. Bone 2017; 104: 44-53
  • 4 Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2013; 24 (01) 23-57
  • 5 Glüer C-C. 30years of DXA technology innovations. Bone 2017; 104: 7-12
  • 6 Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD Official Positions Part 2: Trabecular Bone Score. J Clin Densitom 2015; 18 (03) 309-330
  • 7 Broy SB, Cauley JA, Lewiecki ME, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD Official Positions Part 1: Hip geometry. J Clin Densitom 2015; 18 (03) 287-308
  • 8 Clotet J, Martelli Y, Di Gregorio S, Del Río Barquero LM, Humbert L. Structural parameters of the proximal femur by 3-dimensional dual-energy X-ray absorptiometry software: comparison with quantitative computed tomography. j Clin Densitom 2018; 21 (04) 550-562
  • 9 Kanis JA, Oden A, Johnell O. et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007; 18 (08) 1033-1046
  • 10 Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol 2013; 9 (01) 28-42
  • 11 Bazzocchi A, Isaac A, Dalili D. et al. Imaging of metabolic bone diseases: the spine view, Part I. Semin Musculoskelet Radiol 2022; 26 (04) 478-490
  • 12 Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg M-A. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 2011; 14 (03) 302-312
  • 13 Iki M, Tamaki J, Kadowaki E. et al. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res 2014; 29 (02) 399-407
  • 14 Leslie WD, Aubry-Rozier B, Lix LM, Morin SN, Majumdar SR, Hans D. Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone 2014; 67: 10-14
  • 15 Greendale GA, Huang M, Cauley JA, Harlow S, Finkelstein JS, Karlamangla AS. Premenopausal and early postmenopausal trabecular bone score (TBS) and fracture risk: Study of Women's Health Across the Nation (SWAN). Bone 2020; 140: 115543
  • 16 McCloskey EV, Odén A, Harvey NC. et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 2016; 31 (05) 940-948
  • 17 Hans D, Shevroja E, McDermott M, Huang S, Kim M, McClung M. Updated trabecular bone score accounting for the soft tissue thickness (TBSTT) demonstrated significantly improved bone microstructure with denosumab in the FREEDOM TBS post hoc analysis. Osteoporos Int 2022; 33 (12) 2517-2525
  • 18 Haeri NS, Perera S, Ferreiro I, Hans D, Greenspan SL. Trabecular bone score in the hip: a new method to examine hip bone microarchitecture—a feasibility study. Arch Osteoporos 2022; 17 (01) 126
  • 19 White R, Krueger D, De Guio F. et al. An exploratory study of the Texture Research Investigational Platform (TRIP) to evaluate bone texture score of distal femur DXA scans—a TBS-based approach. J Clin Densitom 2021; 24 (01) 112-117
  • 20 Goel H, Binkley N, Boggild M. et al. Clinical use of Trabecular Bone Score: the 2023 ISCD Official Positions. J Clin Densitom 2024; 27 (01) 101452
  • 21 Bandirali M, Poloni A, Sconfienza LM. et al. Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study. Eur Radiol 2015; 25 (07) 2194-2198
  • 22 Krohn K, Schwartz EN, Chung Y-S, Lewiecki EM. Dual-energy X-ray absorptiometry monitoring with Trabecular Bone Score: 2019 ISCD Official Position. J Clin Densitom 2019; 22 (04) 501-505
  • 23 Leslie WD, Aubry-Rozier B, Lamy O, Hans D. Manitoba Bone Density Program. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 2013; 98 (02) 602-609
  • 24 Paggiosi MA, Peel NFA, Eastell R. The impact of glucocorticoid therapy on trabecular bone score in older women. Osteoporos Int 2015; 26 (06) 1773-1780
  • 25 Shevroja E, Reginster JY, Lamy O. et al. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos Int 2023; 34 (09) 1501-1529
  • 26 Hsu Y, Hsieh TJ, Ho CH, Lin CH, Chen CKH. Effect of compression fracture on trabecular bone score at lumbar spine. Osteoporos Int 2021; 32 (05) 961-970
  • 27 International Society for Clinical Densitometry. 2019 Official Positions, Adults. Available at: https://iscd.org/wp-content/uploads/2021/09/2019-Official-Positions-Adult-1.pdf. Accessed July 1, 2024
  • 28 Shevroja E, Aubry-Rozier B, Hans G. et al. Clinical performance of the updated Trabecular Bone Score (TBS) algorithm, which accounts for the soft tissue thickness: the OsteoLaus study. J Bone Miner Res 2019; 34 (12) 2229-2237
  • 29 Ulivieri FM, Rinaudo L. The bone strain index: an innovative dual X-ray absorptiometry bone strength index and its helpfulness in clinical medicine. J Clin Med 2022; 11 (09) 2284
  • 30 Ulivieri FM, Rinaudo L. Beyond bone mineral density: a new dual X-ray absorptiometry index of bone strength to predict fragility fractures, the bone strain index. Front Med (Lausanne) 2021; 7: 590139
  • 31 Han KS, Rohlmann A, Zander T, Taylor WR. Lumbar spinal loads vary with body height and weight. Med Eng Phys 2013; 35 (07) 969-977
  • 32 Ulivieri FM, Rinaudo L, Messina C. et al. Bone strain index: preliminary distributional characteristics in a population of women with normal bone mass, osteopenia and osteoporosis. Radiol Med (Torino) 2022; 127 (10) 1151-1158
  • 33 Messina C, Piodi LP, Rinaudo L. et al. Bone strain index reproducibility and soft tissue thickness influence: a dual X-ray photon absorptiometry phantom study. Eur Radiol Exp 2019; 3 (01) 33
  • 34 Messina C, Piodi LP, Rinaudo L. et al. Reproducibility of DXA-based bone strain index and the influence of body mass: an in vivo study. Radiol Med (Torino) 2020; 125 (03) 313-318
  • 35 Messina C, Acquasanta M, Rinaudo L. et al. Short-term precision error of bone strain index, a new DXA-based finite element analysis software for assessing hip strength. J Clin Densitom 2021; 24 (02) 330-337
  • 36 Messina C, Rinaudo L, Cesana BM. et al. Prediction of osteoporotic fragility re-fracture with lumbar spine DXA-based derived bone strain index: a multicenter validation study. Osteoporos Int 2021; 32 (01) 85-91
  • 37 Tabacco G, Naciu AM, Messina C. et al. DXA-based bone strain index in normocalcemic primary hyperparathyroidism. Osteoporos Int 2023; 34 (05) 999-1003
  • 38 Tabacco G, Naciu AM, Messina C. et al. DXA-based bone strain index: a new tool to evaluate bone quality in primary hyperparathyroidism. J Clin Endocrinol Metab 2021; 106 (08) 2304-2312
  • 39 Messina C, Piodi LP, Grossi E. et al. Artificial neural network analysis of bone quality DXA parameters response to teriparatide in fractured osteoporotic patients. PLoS One 2020; 15 (03) e0229820
  • 40 Sornay-Rendu E, Duboeuf F, Ulivieri FM, Rinaudo L, Chapurlat R. The bone strain index predicts fragility fractures. The OFELY study. Bone 2022; 157: 116348
  • 41 Ito M, Nakata T, Nishida A, Uetani M. Age-related changes in bone density, geometry and biomechanical properties of the proximal femur: CT-based 3D hip structure analysis in normal postmenopausal women. Bone 2011; 48 (03) 627-630
  • 42 Väänänen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med Image Anal 2015; 24 (01) 125-134
  • 43 Humbert L, Bagué A, Di Gregorio S. et al. DXA-based 3D analysis of the cortical and trabecular bone of hip fracture postmenopausal women: a case-control study. J Clin Densitom 2020; 23 (03) 403-410
  • 44 Lanzer P, Hannan FM, Lanzer JD. et al. Medial arterial calcification: JACC state-of-the-art review. J Am Coll Cardiol 2021; 78 (11) 1145-1165
  • 45 Yang SW, Yang HF, Chen YY, Chen WL. Unraveling the link between metabolic syndrome and abdominal aortic calcification. Nutr Metab Cardiovasc Dis 2021; 31 (02) 464-471
  • 46 Criqui MH, Denenberg JO, McClelland RL. et al. Abdominal aortic calcium, coronary artery calcium, and cardiovascular morbidity and mortality in the Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34 (07) 1574-1579
  • 47 Wu M, Liu Y, Zhong C, Xu B, Kang L. Osteoporosis was associated with severe abdominal aortic calcification based on a cross-sectional study. Arch Osteoporos 2021; 16 (01) 79
  • 48 Setiawati R, Di Chio F, Rahardjo P, Nasuto M, Dimpudus FJ, Guglielmi G. Quantitative assessment of abdominal aortic calcifications using lateral lumbar radiograph, dual-energy X-ray absorptiometry, and quantitative computed tomography of the spine. J Clin Densitom 2016; 19 (02) 242-249
  • 49 Schousboe JT, Wilson KE, Kiel DP. Detection of abdominal aortic calcification with lateral spine imaging using DXA. J Clin Densitom 2006; 9 (03) 302-308
  • 50 Sethi A, Taylor DL, Ruby JG. et al. Calcification of the abdominal aorta is an under-appreciated cardiovascular disease risk factor in the general population. Front Cardiovasc Med 2022; 9: 1003246